
AD-A1I7 948 SYSTEMS CONTROL TECHNOLOGY INC PALO ALTO CA F/6 9/2
ENHANCEMENTS AND ALGORITHMS FOR AVIONIC INFORMATION PROCESSING --ETC(U)
JUN 82 K DOTYe A LEMOINE, P MCENTIRE N62269-81-C-0477

UNCLASSIFIED NADC-8I105-50 NL1EEEEEllEI-EEI
EEEEIIEEIIEEI
EIIIIEIIEIIIIE
EEEEEEEIIEIII
EIIEEIIEEEEIIE
EEEEEEEEEEIIEE

I

1801 PAGE MILL RD. PO. BOX 1010 PALO ALTO, CALIFORNIA 94,303 (Q5) 4,9-2233

Report No. NADC-81105-50

ENHANCEMENTS AND ALGORITHMS

FOR

AVIONIC INFORMATION PROCESSING SYSTEM DESIGN METHODOLOGY

I < K. Dory
A. Lemoine
P. McEntire

SYSTEMS CONTROL TECHNOLOGY, INC.
1801 Page Mill Road

Palo Alto, CA 94304

16 June 1982

FINAL REPORT

Contract No. N62269-81-C-0477

I Approved for public release; distribution unlimited.

Prepared for D I
NAVAL AIR DEVELOPMENT CENTER E LE C T

-J Warminster, PA 18974 AUGO

U. E
82 08 06 040

Unclassified
%ECu AITY CLASSIFICATION OF THIS PAGE (Wheon DOe Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 72. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NAD-81105-50 I)- 11 /YL_
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Enhancements and Algorithms for
Avionic Information Processing System FIN OPORT
Design Methodology 6. PERFORMING ORG. REPORT NURSER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(@)

K. Doty, A. Lemoine, P. McEntire N62269-81-C-0477

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Systems Control Technology, Inc. F21-241-091
1801 Page Mill Road ZD121
Palo Alto, CA 94304

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Air Development Center (5021) 16 June 1982

Warminster, PA 18974 13. NUMBER OF PAGES
123

14. MONITORING AGENCY NAME & AODRESS(I dillerent from Conrolling1 Office) IS. SECURITY CLASS. (of thle epon)

Unclassified
IS. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from Rep mt)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlinue on reverse aide if neceesar md Identify by block nmber)

Distributed Data Processing, Software Allocation, Hardware Design,
Dynamic Programming, Spatial Dynamic Programming, Stochastic Networks,
Graph Theory

STRACT (Continue on reverse side It neceeea and identify by block number)

1is report continues the study of both the software allocation and hardware
configuration aspects of avionic information processing systems. The
previously developed spatial dynamic programming algorithm is enhanced by
incorporating task precedence constraints and hardware failures. Stochastic
network methods are used to analyze allocations in the presence of random
fluctuations. Graph theoretic methods are used to analyze hardware designs,
and new designs are constructed with better values of important parameters,
such as the araph diameter-.DOd~' IrE 17 o,iO- of, I Nov, 5 LETS

DD I jAN73 7 O OF Unclassified
VN 0102-LF-014-601

SECURITY CLASSIFICATION OF THIS PAGE (Ien Date le ed)

NADC-81105-50

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. THE SOFTWARE ALLOCATION PROBLEM 5

2.1 INTRODUCTION.....................5

2.2 SOFTWARE ALLOCATION WITH PRECEDENCE CONSTRAINTS . 7

2.3 STOCHASTIC VARIABILITY AND SOFTWARE ALLOCATION .17

2.3.1 Model Description. 19

2.3.2 Routing and Resource Requirements 21

2.3.3 Poisson Input 26

2.4 EXTENSIONS OF SDP....................32

III. OPTIMAL ARCHITECTURES FOR DISTRIBUTED SYSTEMS 37

3.1 PROBLEM OVERVIEW 37

3.2 A NETWORK EVALUATION TOOL 44

3.3 MINIMAL DISTANCE PROBLEM...............46

3.4 NETWORK RELIABILITY.56

3.5 BUS CONNECTION NETWORKS 63

REFERENCES 72

APPENDIX A............................A-1

APPENDIX B............................B-1

APPENDIX C..............................C-1

APPENDIX D..............................D-1

APPENDIX E............................E-1

COPC ,P~

I:'o-

NADC -81105-50

LIST OF FIGURES

Page

2.1 Software Trees for Example 8

2.2 Schedule for Example 9

2.3 Example of Precedence Relationships.13

2.4 Example of Task Windows 13

2.5 Two Software Functions with Precedence Constraints 14

2.6 Network of Possible Assignments 15

2.7 Schedule Produced by SDP Algorithm 16

2.8 Compressed Schedule 17

2.9 Network Examples.20

2.10 Time/Penalty Tradeoff 34

3.1 Ring Network. 39

3.2 Fully Connected Network 39

3.3 Hierarchical Network. 40

3.4 Degree/Diameter Tradeoff for 12-Node Graphs. 42

3.5 Possible 12-Node Graphs with Degree d, Diameter k42

3.6 Star Network 43

3.7 Two Chordal Rings 46

3.8 Petersen Graph. 49

3.9 Star Polygon. 51

3.10 Hinging Graph 51

3.11 Multi-Tree Structured Network 53

3.12 A Generalized Chordal Ring. 53

3.13 A Degree 4 Generalized Chordal Ring. 53

3.14 38 Node, Degree 3, Diameter 4 Graph. 54

3.15 60 Node, Degree 3, Diameter 5 Graph.54

3.16 Example of a Critical Reliability Graph.58

3.17 Linear Architecture 58

3.18 Average Distance vs. Reliability for Link Added to

Linear Graph. 59

NADC-81105-5 0

LIST OF FIGURES (Continued)

Page

3.19 Additional Edges to Increase Reliability. 61-62

3.20 Example of a Bus Connection Network63

3.21 Two Representations of 7 Node, Diameter 1 Graph 65

3.22 Graph Showing n(2, b, 1) > b +- 1. 68
3.23 Graph Showing n(2, b, 2) > b2+ 1.. 68

3.24 Graph Showing n(2, b, 2) < b2 -1 169

3.25 Graph Showing n(3, 4, 1) 8 8.. 69

3.26 A Hinging With r 3, b =4, k = 3. 71

3.27 Chordal Ring With Degree 3, Diameter 2, 24 Processor
Nodes 71

iv

NADC-81105-50

SECTION I

INTRODUCTION

The objective of this contract is to begin development of a unified

approach to the important problem of selecting an optimal hardware design

for, and optimally allocating software tasks in, avionic information pro-

cessing systems. This report summarizes the technical achievements accom-

plished during the contractual period.

The research conducted under this contract, and its predecessor [17],

has focused on methodology for the combined software allocation/hardware

design problem. The two aspects of the problem are inherently linked in

that a hardware design cannot be evaluated properly until the software

allocation is specified, and, conversely, that the "best" location for the

software depends critically upon the hardware design.

The first step by Systems Control Technology (SCT) has been to look

at the two aspects of the problem separately. In [17] the focus was on

software allocation. There, spatial dynamic programming (SDP) was used

to solve a static, deterministic software allocation problem. Under the

current contract the SDP methodology has been extended to incorporate both

dynamic an,-' nchastic effects. In addition, an approach for evaluating

software allocations in a stochastic environment has been developed which

is quite flexible, yet simple and computationally tractable.

Investigation of the hardware design problem has also been initiated.

A method based on graph theory has been used to evaluate candidate network

architectures. Specific architectures have been identified which exhibit

extremal values of important attributes such as maximum interprocessor

distance. A more realistic hardware model involving buses over which

several processors can communicate has also been studied.

Given these noteworthy and promising devel.opments from our research,

the next step is to merge thi software allocation and hardware design

1

NADC-81105-50

aspects of the problem to achieve the overall goal of the research program.

In particular, for a specific set of software functions the optimal design

and optimal allocation must be identified fur given tradeoffs involving

cost, performance, and availability. We anticipate that the results of

this contract will be an integral part of the solution methodology for the

combined problem.

This report is organized as follows. Section 2 addresses the software

allocation problem. Each of the subsections here focuses on a separate

aspect of the problem. Section 2.1 introduces the software allocation

problem in some detail and also discusses the computational complexity

of the SDP algorithm. Section 2.2 examines several methods for attacking

the software allocation problem when the tasks are constrained by precedence

relationships, as indeed they are in most avionic systems. Section 2.3

presents a methodology for evaluating allocations in the presence of

stochastic fluctuations, using the methods of stochastic network theory.

Section 2.4 discusses two extensions of the SDP methodology resulting in a

more accurate model - one involving the allocation of files as well as

tasks, the other allowing redundant assignment of tasks because of the

possibility of hardware failures.

Section 3 concentrates on the hardware design problem. Section 3.1

presents an overview of the hardware design problem. In Section 3.2 a

computer program called NETEV is described; this program has been used to

evaluate candidate architectures. Section 3.3 discusses a particularly

important problem in the design of networks which relates to minimizing

the maximm inter-processor distance. Section 3.4 looks at the problem

of network reliability, and the tradeoff between reliability and small

distances. Finally, Section 3.5 examines the issue of how to design

networks when buses connecting several processors are available.

The report also includes three appendices. Appendix A is a listing

of the main allocation program using SDP; a sample set of input and output

2

NADC-81105-50

is also provided. Appendix B is a listing of the NETEV program used to

evaluate candidate computer network architectures. Appendix C provides

a proof for a theorem presented in Section 3.4 involving processors with

two ports.

Future Directions

The research described here is a first step to achieving the important

goal of a complete software allocation/hardware design methodology to

significantly improve the performance of avionic information processing

systems. Several technical approaches for moving toward this unified

methodology are currently envisioned. One of the simplest is a successive

approximation method. For a given hardware arrangement, the optimal soft-

ware allocation is identified, perhaps by a modification of the SDP algorithm

in which variable hardware connections are allowed. Given the optimal

software allocation, the optimal hardware connections are then found.

The second step might be based on the work. of Torng and Wilhelm [48], and

may use results from Section 3 of this report. For the new hardware con-

nection scheme, the optimal software allocation is found, and the process

is repeated until the scheme converges.

Another approach is to blend the task-to-processor assignment graph

with the bipartite hardware graph of Section 3.5. The result would be a

tripartite graph, consisting of tasks, processors, and buses. Tasks would

be assigned to processors, and processors assigned to buses. The solution

method could again be based on SDP.

Whatever the solution method, solving the unified problem will produce

significant payoffs. For example, the effect on an entire system of adding

another processor can be investigated. Only if the advantages of improved

performance and availability outweigh the increased cost should that

processor be added. The capability for solving such allocation problems

should indeed result in better avionic systems.

3

NADC-81105-50

The methods developed should have a significant impact on the design

of distributed computer systems, providing a quantitative foundation for

decisions that vitally affect the performance and cost of the systems.

The stringent constraints associated with avionic systems make such systems

a fruitful application area for these methods.

4

NADC-81105-50

SECTION II

THE SOFTWARE ALLOCATION PROBLEM

2.1 INTRODUCTION

We are interested in methods for the optimal allocation of a set

of software tasks to a set of hardware elements consisting of pro-

cessors, memories and communication links. This software allocation

problem is difficult; it is a dynamic, stochastic, highly combinatorial

problem with many different objectives.

SCT's approach has been to start with a simple model, and gradually

increase the complexity to achieve greater realism. In the previous

contract [171 a static, deterministic software allocation problem was

considered in which a known set of tasks with known requirements and

without precedence constraints are to be allocated to a set of fully

connected processors with dedicated memories. The objective is to

minimize the completion time of all the tasks. There are also constraints

on the allocation; each task can only run on a subset of the processors,

some tasks may have bounds on their finishing times, and memory con-

straints must be met.

The solution technique used for this problem has been spatial dynamic

prograimming (SDP). Tasks and processors are considered as nodes of an

allowable assignment graph. Nodes are processed one at a time, to

minimize the completion time of the processor nodes considered thus far.

The code for the SDP algorithm appears as Appendix A of this report.

It is written in PASCAL for a DEC VAX 11/780 and consists of 7 modules,

which are then linked in order to execute the program. The heart of the

code is procedure FIND COST, which computes the maximum processor

finishing time. After the code listing a sample set of input and output

appears for an example involving 8 processors and 20 tasks.

5

NADC-81105-50

The amount of time required to solve a software allocation problem

depends critically upon the complexity of the task-to-processor assign-

ment graph. Given the assignment graph, there is the subproblem of

finding the optimal order to process the nodes in the SDP method.

Appendix B of [17] discusses this subproblem in the case where each

of n tasks can run on each of m processors. The problem complexity

is then approximately 2mn l 2.

This is an upper bound on the complexity, because often there wil]

be sparsity in the assignment graph. Using the notation of [39), the

complexity is approximately equal to

mn 2 iEkl + k (1)

k=1

A
where Ek and Ik are sets of external and internal variables involved

A

with the kth node. If the values of !E + 'ki are approximately

equal, as they will be in the optimal order, then expression (1) is close to

I A

(m+n) 2max (jEk + Ilki) (2)

Now it is still difficult to tell what JEk + VIk is. About

all that is known is that JEk! +I k dk , where dk is the degree

of the kth node. Suppose each task can be allocated to c processors.

Then some processor must be able to handle cn/m tasks. As a result,

max(IEkj + ik1) > cn/m. Thus expression (2) becomes approximately

(m + n)2 cn/
M (3)

assuming that n > m. Expression (3) shows qualitatively what has been

experienced with the SDP algorithm in practice. If the number of tasks

and processors both increase without changing their ratio, then the

amount of work increases linearly. However, if the number of tasks alone

increases, or the graph becomes denser (c increases), then the amount

of work increases exponentially.

6

NADC-81105-50

The software allocation problem for avionic systems is dynamic

and stochastic. Certain tasks must execute before others. Several

methods for extending the SDP algorithm to cover the allocation problem

with precedence relations are discussed in Section 2.2. In addition,

there may be uncertainty about exactly which tasks must execute, or how

long they will take. Section 2.3 examines a method for analyzing the

behavior of processing demands in a stochastic environment, using the

methods of stochastic network theory. These methods of analysis can be

used to test the effectiveness of a software allocation algorithm.

The last section (2.4) discusses two modifications of the Dasic

SDP algorithm to correspond to a more realistic software/hardware model.

The first modification concerns the allocation of files as well as tasks.

The other modification allows the possibility of processor failures.

Tasks can be allocated to more than one processor, with the more important

tasks being the ones most likely to have redundaint assignments.

2.2 SOFTWARE ALLOCATION WITH PRECEDENCE CONSTRAINTS

The tasks for execution in real avionic software systems usually

have precedence cqnstraints. That is, certain tasks must finish execl-:ing

before others are allowed to start. The principal reason for such con-

straints is that data from earlier tasks is needed for those coming later.

A solution for the allocation problem with precedence constraints

requires not only an allocation of the tasks to the processors, but also

a scheduling of the tasks. The time that each task begins executing

must be specified and when a task starts, all tasks which come before it

(as dictated by the precedence constraints) must be finished.

Figure 2.1 shows an example of precedence relationships among a

set of 20 tasks. (This example is taken from [17]). A feasible schedule

for these tasks on a complete network of six processors is shown in

Figure 2.2. Notice ':hat some processors have "dead time," in which no

task is being executed.

7

NADC-81105-50

4

0%0

CI-

8i

NADC-81105-50

Inn

C)

EME

0 w

a- c.,0J a

oO~D~

9L

NADC-81105-50

The precedence problem is fundamentally computationally intensive.

Thus, any solution method will either grossly simplify the problem, or

require an excessive amount of computation, or use heuristics to arrive

at a solution which is most likely sub-optimal. As a result, it seems

advisable to discuss several different approaches to this problem, each

of which has its own advantages and drawbacks. However, we will recommend

one method (spatial dynamic progranmming with the "method of windows") which

we believe is the best approach.

The classical methods for solving such problems can be found in the

area of operations research known as scheduling theory. Generally speaking,

a set of tasks is to be scheduled on one or more machines, in order to

optimize some performance criterion. Unfortunately, all but the simplest

formulations fall into a class of problems known as NP-complete, which

are notorious for their computational intractability. For example,

Hu [32] showed that if there are m identical processors, n tasks which

each require one time unit, and if the precedence constraints form a tree,

then there is a simple algorithm to minimize the completion time of all

the tasks. If the tasks are not identical in time requirements, or if

the precedence constraints do not form a tree, then the problem is

NP-complete [38]. Lenstra and Rinooy Kan [38] discuss several solvable

precedence problems and many more unsolvable ones (at least in a reasonable

amount of time).

Only a few of the papers on software allocation discuss precedence

constraints. One such paper [8] is the most recent in a series of arti-

cles by Kokhari. In [8] the precedence relationships must again be in

the form of a tree. Each task is allocated to a processor and to a time

phase. If task i must preceed task j and task i is allocated to a time

phase k, then task j must be allocated to the same phase or later. The

solution method, based on dynamic programming, finds the optimal solution

subject to the predetermined phases. In this case "optimal" has a

different meaning - the sum of execution and communication times. As a

10

NADC-81l05-50

result, the solutions (such as the example in [8]) are likely to have a

significant amount of dead time, which may not be acceptable. Another

drawback to this method is the difficulty of incorporating memory con-

straints. Thus while the method may be interesting, it is unlikely to

solve our problem.

Dr. Ma and others at TRW used the branch-and-bound method of integer

programming to solve an allocation problem in 140]. The method involved

a form of precedence constraint in that several "threads" of tasks had

to satisfy "port-to-port" time constraints. A "thread" consists of a

set of tasks which must execute consecutively. However, the method for

determining whether these time constraints are met is not explained.

In addition, the optimization criterion of minimizing interprocessor com-

munication may result in unbalanced processor loads.

Instead of trying to find an optimal solution to a simple formulation,

a suboptimal solution to a complex formulation may be found via heuristics.

One heuristic method for the allocation problem with precedence constraints

is described in the final report of this contract's predecessor [17]. It

is based on the longest-path method used by Kaufman (34]. The modifications

described in our report incorporate inter-task communication and task

memory requirements. Several examples are given there showing how the

method is used. The primary drawback to this method is that because it

is heuristic it is unlikely to produce optimal solutions. In many cases

the solutions will be near-optimal, but sometimes they may be far from

optimal. However, for problems which are large enough (say, 15-20 tasks

per processor) that more complex methods (such as the "method of windows"

described below) are computationally prohibitive, a good heuristic method

such as this is essentially the only way to produce an acceptable allo-

cation.

The method we recommend for solving the allocation problem with

precedence constraints is spatial dynamic progranmming, with certain modifi-

cations. The primary reason for this is that the SDP method is very

general. Several different performance criteria and many types of con-

straints can be incorporated.

11

NADC-81105-50

The modifications are called the "method of windows." For each task

we set up a "window" of time in which it may execute. The window is

larger than the task's execution time. If task A must precede task B,

A's window should come before B's. Any allocation which satisfies the

window constraints automatically satisfies the precedence constraints.

Figure 2.3 shows an example of a precedence tree. Assume that this

is one of several in a particular allocation problem. The execution times

are given in the second column of Table 2.1. Next the windows need to be

established. The last column of Table 2.1 gives one set of windows

which forces the tasks to satisfy the precedence constraints.

Finding an appropriate size for the windows must be done on a heuristic

basis. Factors which should be taken into account include the number of

processors and the amount of parallelism in the software structure. if

the windows are too small there will be no feasible solution, and the

windows should be enlarged. If the windows are too big there will be a

significant amount of dead time in the schedule, making the completion

time larger than it should be. This can be remedied by either compressing

the schedule to remove some dead time or by shrinking the window sizes.

Once the windows are established, the SDP algorithm proceeds as in

the static case with no precedence relationships. However, now there

are additional constraints which must be checked at each processor node.

For each set of tasks which may be allocated to the processor, it must

be determined whether there is a feasible solution which meets the

window constraints. If there are k tasks in the candidate allocation,

there are k! possible execution orders. Conceivably each of these

may have to be examined to see if there is one which meets the con-

straints.

As an example, consider the situation shown in Figure 2.4. Only

one order of execution, A then C then B, will satisfy the window con-

straints. However, if B required more than 15 time units there would

be no feasible schedule.

121

NADC-81105-50

A

C

ic

!F

Figure 2.3. Example of Precedence RelationstAps

Task Execution Time Window

A 10 0-15

B 20 15-45

C 10 45-65

D 15 45-70

E 25 70-110

F 5 70-90

Table 2.1
Execution Times and Corresponding Windows

Task Execucion Window

A r I I

B 15L

I I

0 10 20 30 40 50

Figure 2.4. Example of Task Windows

13 j

NADC -81105-50

If k is not more than, say 10, It is feasible to consider all p, 3sible

orders. McMahon and Florian [41] give an efficient method of enumerating

all possibilities. For larger values of k, heuristic methods may have to

be used. Baker and Su [4] showed that some heuristics can often determine

whether a feasible schedule exists. If the heuristics do not come up with

a feasible solution, the windows may have to be enlarged.

As an example of how the method of windows works, consider the two

software functions shown in Figure 2.5. (Admittedly this is a small example,

but it will illustrate the method). The data for the tasks is shown in

Table 2.2. The windows were chosen to be about 50% larger than the execution

times, and to preserve the precedence constraints. The hardware will be

three fully connected processors, each with a dedicated memory with capacity

40. Figure 2.6 shows the network of possible assignments.

14 5

2 6

0

Figure 2.5. Two Software Functions with Precedence Constraints

14

NADC-81105-50

EXECUTION MEMORY
TASKS TIME WINDOW REQUIREMENT

1 10 0-15 20

2 5 15-25 10

3 15 25-50 20

4 10 0-30 25

5 20 0-30 10

6 15 30-50 10

Table 2.2
Data for Example

Figure 2.6. Network of Possible Assignments

15

NADC-81105-50

One point to notice is that the window constraints are binding. For

example, there is sufficient memory for tasks A, B, and E all to be located

at processor 2. However, not all of the task window constraints can be

met.

Using SDP, an optimal allocation given these windows is found to be

assigning task 4 to processor 1, tasks 1, 2, and 6 to processor 2, and

tasks 3 and 5 to processor 3. The resulting schedule is shown in Figure 2.7.

As expected, there is a significant amount of dead time. The schedule can

be compressed, being careful to maintain the precedence constraints, as

shown in Figure 2.8.

Processor

1 4

10 20 30 40 50

Figure 2.7. Schedule Produced by SDP Algorithm and "windows"

16

NADC-81105-50

Processor

1 4

3 5 3

10 20 30 40 50

Figure 2.8. Compressed Schedule

We have examined several methods for attacking the software allocation

problem when there are precedence constraints. Another important feature

in avionic systems is that the tasks neided on a mission and their execution

times are uncertain. The next section discusses a method for evaluating

allocations in a stochastic environment.

2 .3 STOCHASTIC VARIABILITY AND SOFTWARE ALLOCATION

We are concerned in this section with a network of processors and

associated software functions for which the input of jobs (requests for

execution of software functions) is uncontrolled, movements (routes) of

jobs throu0, the system and class changes of jobs are random, resources

required to process jobs vary randomly, time horizons of shorter duration

than necessary to achieve "steady-state" are of interest, and where it is

important to respond to demands with minimal competition for available

17

NADC-81105-50

processing resources. We want to account for rhese various factors through

an appropriate network model and provide useful and computationally tractable

results for performance prediction, The model structure we consider is

reminiscent of Baskett et al [7] but the approach taken in analyzing the

model is prompted by Harrison and Lemoine [29].

In this model, a "Job" corresponds to a sequence of tasks. As the job

moves through the network of processors, different tasks are being executed.

Changing the "class" of a job corresponds to moving from one task to another

within a job. Admittedly this is different terminology than has appeared

previously; it is used to correspond to the terminology in the stochastic

network theory literature.

This section is organized as follows. The basic features of the

model are described in 2.3.1. Following this, we consider in 2.3.2 the

movement of a typical job through the network with particular emphasis

on the resources required, global as well as nodal, to process the job

until it leaves the system. We then consider in 2.3.3 the evolution of

the network over time when the pattern of demand input is a Poisson

process and the processing resources available at each node in the network

are effectively unlimited (e.g., there are sufficient servers at each

node so that objects never wait in queue). An explicit representation

is given for the time-dependent distribution of network state (defined

here as the numbers of jobs of various types at each node in the system).

When the Poisson input process is homogeneous, this time-dependent dis-

tribution converges to a limit, and the "distance" between the time-dependent

and limiting distributions is estimated. Some implications of the results

for design and performance analysis are indicated. Indeed, the basic

notion behind the approach of 2.3.3 is to first determine a (tine-dependent)

distribution on the level of resource usage in the system assuming ample

resources are available, and to then use this distribution for identifying

candidate resource capacity design parameters and assessing "adequacy" via

confidence intervals obtained from the distribution.

18

NADC-81105-50

2.3.1 Model Description

Consider a network in which jobs in different classes are moving

through the system, and also possibly changing class, in a possibly random

manner, and requiring a possibly r-andom amount of resource (program, pro-

cessing, memory, time, etc.) at each node visited. There are N nodes

(processing centers, clusters, etc.) indexed by i and M job classes

indexed by m. Inputs for processing at any node may originate directly

from outside the system or by internal transfer within the network. On

any visit to node i by a job in class m the job is completed (routed

to an artificial sink in the network) after processing at i with probability

qmj) independently of previous visits, classes and other jobs present in

the system; and, in this event, the amount of resource required at node

to process the job is distributed as a random variable S i. Further,

on any visit to node i by a job in class m the job remains in the system

after processing at node i and transfers to node j as a job in class r
mrwith probability pt.j, independently of prior visits, classes and other jobs

(if i=j then the job is sent back to node i), where

N M
q~l- Z ~ mr

j-l r1l

for each m and i; and, in this event, the amount of resource required

at node i to process the job is distributed as a random variable R m
i ~ij-

Processing requirements for all visits by all jobs in all classes to any

node are independent, and all jobs eventually exit from the system. The

model dynamics can be summarized by two examples. The top of Figure 2.9

shows two software functions A and B with separate external input.

In function A, there is a stochastic transition after task 1: task 2

is executed with probability p and task 3 is executed with probability

1-p. In function B, after task 7 finishes the function is again executed

with probability l-q. This might correspond to a tracking function,

where the tracking stops if the object being tracked leaves the radar

screen.

19

NADC-81105 -50

3 6

Figure 2. 9. Network Examples

23

NADC-81105-50

The bottom of Figure 2.9 shows a possible allocation of these tasks to a

network of four processors. The transitions which are actually made depend

on the particular task being executed at a processor. For example, from

the processor where tasks 1 and 5 are allocated execution proceeds to the

right if either task 2 or task 6 follows, while it goes to the processor

below if task 3 follows. All execution streams eventually enter the sink

with probability 1.

The preceding formulation can easily accommodate multiple resource

types by specifying, for each type of resource, appropriate probability

distributions for R and S . for m,r=l,...,M and i,j=l,...,N.
ij ml

In what follows we do not distinguish between multiple resource types in

order to keep the notation from being excessively complicated, but the

results presented on resource requirements are valid for each resource type.

2.3.2 Routing and Resource Requirements

Consider now the route and class of a generic job moving through the

network. Let b i be the probability that a job enters the system through
ml = [Pr

node i in class m. For i,j=l, ...N let P.. mr[. where m,r=l,...,M
iJ i

so that Pij is a M by M matrix, and then put P = [Pij] so that P

is a N by N block matrix. Let I be the NM by NM identity matrix.

The routing-and-class history of a typical job moving through the system

corresponds to the evolution of a finite Markov chain with a single ab-

sorbing state (namely, the network sink) and non-absorbing states { (m,i):

m-l,...,M and i=l,...,N}, with transitions among non-absorbing states

governed by P. Since all jobs eventually exit the system (i.e., the

chain is absorbing) the matrix I - P is invertible, and

x='O

If we put (I - P)-i = [Aij] and Aij = [air then aij is the expected

number of requests for processing at node j by a job in class r which

21

NADC-81105-50

mr

originally enters the network through node i in class m. Let mr be
13

the probability a job entering via node i in class m reaches node j
mm -i mr mr, rr

in class r at some later step. Then cii = 1 - (a-) and _.. = a. . /a.

mr isij thJe
otherwise. Moreover, if qij is the probability that a job entering the

network via node i in class m exits the system from node j in class r

then q.mr mr q rr otherwise. Finally, if q*

e A rj - n ij ij qj mi
is the unconditional probability that a job exits the system from node i

in class m then

SN M rm
qmi qmi 1 b . a.mj=1 r= r31

mr mr *

The above expressions for the probabilities Pi' q i and qmi follow

immediately from well known results for finite absorbing Markov chains;

cf. Kemeny and Snell [35). Observe that the crucial factor in determining

these various routing and class parameters is computation of the matrix

(I - P)- 1 In many applications of interest this matrix I - P will be

relatively sparse, indeed even upper triangular.

Turning to global network resource requirements, let L . be the

total -level of resources necessary to process a job until it reaches the

network sink given that the job enters the system at node i in class m.
mr

For e > 0 let f. (e), gj (e), and hm (e) be the Laplace transforms

for the distributions of Smi, R. , and Lmi, respectively. By virtue
of the independence assumptions regarding routing and class and resource

requirements on visits to nodes, the transforms :h .(8): m = 1,... ,M and

i = 1,..,N} satisfy the network flow equations

N M
mr mrh i() = qmif mi() + z Z r Pi gij () h (e) (1)

for m=!,...,M and i=l,...,N. This system of equations has a unique

solution as follows: Let f(e) and h(e) be NM column vectors con-

sisting of N strings of length M where entry m of string i in

f(e) is q mif mi() and entry r of string j in h(6) is h rj(e).

22

NADC-81105-50

th

Let D() be a N by N block matrix where the (ij) block, say D ij(),

is the M by M matrix [p.. g. (e)]. Then (1) is equivalent to
i 1J

h(6) = f(P) + D(e) h(9) (2)

or

[I - D()] h() = f(:).

Since 0 < D(e) < P component-wise it follows that the matrix [I -D()]

is invertible for any 9 > 0; indeed,

[I - D(e)] = Z [D(9)]x
xO

Thus

-i
h(e) = [I - D(e)] f(e). (3)

Computation of the transforms {h .(m)} from (3) is no simple matter, but

we will provide an explicit representation for these transforms using a

slightly different approach.

On the other hand, repeated differentiation of the network flow

equations with respect to e, and then setting e = 0, provides a recursive

procedure for computing the moments (first, second, third, and so on) of the

cumulative resource variables {L .}. For n = 1,2,... let hmi(n) = Ef(Lmi)n},
mr~n E{mr n} (S n}.
g..(n) = E(R.)) and f (n) = Ef(S We assume henceforth that

R j and S have finite moments of all orders for m,r=l,...,M and
ij mi
i,j=l,...,N; the distributions customarily used in the modeling of service

systems have this property, and so the assumption is not really restrictive.

We will now observe that the variables L mi} also have finite moments

of all orders and provide a recursive procedure for computing these moments.

23

NADC-81105-50

Differentiating both sides of (1) n times with respect to and

using Leibnitz's Rule leads to

(n) = f(n)(.) + (n) D(X))h(n-x)()

x0

or

h(n) (
- f (n)() + n) (W) (n-x)

h(9) = [I - D(3)P] f (D (5)h (4)

where the superscripts correspond to component-wise differentiation in (2) and

(n) n.
x x!(n-x)!

Suppose that each of the variables !(Lmi) } has finite mean (this cer-
tainly holds for n = 1). Then each component of h(n-x)(e) has a finite

limit as 3 - 0 for x=l,... ,n. Since [I - D(e)] -I
-, [I - P]-i as

0 0, it now follows from (4) that each component of h (3) has a

finite limit as e - 0, and so each of the variables I(L mi) : as finite

mean. Thus, we conclude by mathematical induction that each of the variables

{L .I has finite moments of all orders. Moreover, using (4) we can giveml

a compact recursive formula for computing these moments. For x=l,2, ...

let 6x, h and h be NM column vectors where the entries correspondingX O

to (m,i) are qmifmi, hmi, and i, respectively; also, let D be a NMx
mr mrby NM matrix where the entry corresponding to (m,i), (r,j) is pigij x).

Then

n = [I - P-l [n + x) x h n-x(5)

for n=1,2,.... The notable feature of the recursion formula (5) is that

it requires only the given network parameters (i.e., the matrix P and

the moments of the variables rRmr, S 'I) and computation of the matrix

[I - P]- .

With regard to nodal (or local) resource requirements, let L.mr. be the

total level of resources required at node j to process a job in class r

which enters the network at node i in class m. Put another way, Lm

24

NADC-81105-50

is the total loading induced at node j by an object ir class r entering

at node i in class m. Observe that

N M
L =Z E L.mr

mi j.1 r1 3

mr mr
Let on'(e) be the Laplace transform for the distribution of Li.. For an

arbitrary node k and job class s let q + Usk - jk and
s sk

q sfs(9) + sk
ss(k -- sks

1 - 'ss sk

The quantity Usk is the probability that a job at node k in class s

departs the network either without returning to node k or from node k

but in a different class. We then have

mr -
() if i=j and m=r, and

mrmr mr* 1 - Pij + 'ij$rj (6) otherwise

Moreover, in reference to the comment following (3) above,

N M

h [1) ' H mr
j=l m1

The transforms mrij (6)} as given above make possible computation of the

moments of the variables (Lm}. For example:
iji

f q fm(1) + (l-qi)gmi (1)
ELiil =m.m m m

1-iii

q fi(2) + (l-q)g (2) + 2 mig (1) E{Lmm}
Ef (Lmm)2} = mimi. imii

am

25

NADC-81105-50

mr I r mm
Et L. .1 } E{L

E{ (L.) = E{ (L')ij ij (ii)

Finally, let Lmi be the total resources required at node i in

class m by a typical job entering the network. Then the distribution

of Lmi has Laplace transform

N M
E Z b rm(9)

j=l r=l rj ji

2.3.3 Poisson Input

We consider now the evolution of the network over time when jobs enter

the system according to a Poisson process A = {A(t), t > 01 with intensity

function {X(t), t > 01 and when the processing resources available to each

node in the network are effectively unlimited (e.g., in queueing parlance,

there are sufficient servers available at each node so that jobs never

wait in queue). The variables Rmr and S . are then interpreted as
ij mi

processing times at node i. The discussion we give follows Section 3

in Harrison and Lemoine [291.

The assumption of Poisson input as stated above means that the numbers

of jobs arriving in non-overlapping time intervals are independent random

variables and that for n = 0,1,2,...

-V A(t) (in

PIA(t) = n} = et [An , t> 0,

where

t

A(t) = \(y)dy

26

NADC-81105-50

In particular, if Ami(t) is the number of jobs entering the network through
node i in class m up to time t and Ami - "A (t), t > 01, then

{A .: mnl,...,M and i=l,...,N} are independent Poisson processes and

A mi has intensity function b MiA(t), t > 0}.

The histories (routes and classes) of jobs moving through the system

are independent and distributed as a process Y - IY(t), 0 < t < Li where

Y(t) E {(m,i): m--1,... ,M and i=l,... ,N} with the variable L interpreted

as the total length of time a generic job is in the network. In particular,

Y(O) = (m,i) with probability b.i, in which case L has the same distri-

bution as the variable L .. Now defineml

Yrj (t) PfL > t, Y(t) - (r,j)}

N M
= E bmi PL mi> t, Y(t) = (r,j) I Y(O) (m,i)},

i=l m=l

t

rj(t) - X (Y)Yrj (t - y) d y ,

0

and

N M t
W:t E- E Z rJ (t) =/ (y)P(L > t-y~dy.

j.l r=1 o

Assuming the network is empty at time 0, the quantity rj (t) is the

expected number of jobs occupying node j in class r at time t and

(t) is the expected number of jobs in the system.

Now let Crj (t) be the number of jobs occupying node j in class

r at time t and let

{C .(t): r=l,... ,M and J=1,...,N}
r2

27

NADC-81105-50

be the "state" of the network at time t. Also, let C - {c .I be arj

generic state of the system. Then the following remarkable result holds

(cf. [291):

N M

P{W(t) - C1 = e- (t) [1rj(t)] rJ/crj (6)
j=l r=6

That is, the number of jobs occupying node j in class r at time t

has a Poisson distribution with mean rj (t), and the numbers occupying

the various nodes and classes are independent random variables.

Implementation of (6) requires computation of the mean values fi (t)}rj

which is difficult for non-homogeneous input. Suppose, however, that A is

a homogeneous Poisson process with A(t) - A for t > 0. Let

CON M
r] (r(y)dy = -2 b E{Lirrj ro i-1 m=l mi ij

and

N M

j=l r=l 'rj

In the homogeneous case we have - (t) r. as to. It then follows from

(6) that

N M

lim P{W'(t) - C1 = e F1 F1 Crj/cjt j-1 r-l crJ" '

This limiting or asymptotic distribution depends only on the arrival rate

and the expected amount of time ri that a job spends at node j in

class r while in the network, and not upon the forms of the distributions

for processing times at the various nodes. Moreover, the numbers of jobs

occupying the various nodes and classes are independent, Poisson distributed

random variables.

28

NADC-81105-50

In the case of homogeneous input, the time-dependent distribution of

state given by (6) can be approximated by the asymptotic distribution given

in (7) when t is large enough. The closeness of this approximation can

be gauged as follows. Let 7t(C) denote the right side of (6) and 7r(C)

the right side of (7) and then define

d(It ,r) - I T (C) - Tr(C)I

C

We can think of d(7 t,7) as the distance between the distribution of state

at time t, namely it, and the asymptotic distribution of state 7. (In

the terminology of measure theory, d(rt ,ir) is the total variation of the

signed measure r-TT .) For the multidimensional Poisson distributions t

and 7, it :an be shown (cf. Cinlar [13, pp. 564-565]) that

N M

d(tr ,r) < 2 Z - "(01
j1 r rj-- j = l r= l r

But the summation on the right side of this inequality is

- (t) = Xf PL > y}dy

t

By Chebyshev's Inequality (cf. Chung [12, p. 48]), we have P(L > y} < A Ln}yn,

whence
00

f P{L > y}dy <_ E{Ln}f y-ndy = E{Ln}/(n-l)tn
- I

t t

for n-2,3,..., where

N ME(Ln}= Z b E{ (L rj)n}

J-l r-l rj

and the moments of the variables {Lr} can be computed recursively
ri

using (5). Thus, if

29

NADC-81105-50

i (t) - [X/(n-1)t n - l] E{L n }

then

and

d(7T ,it) < 2 n (t) (8)

Similar results hold for the marginal distributions of iTt and '.

Indeed, if B is a subset of {(r,j): r-l,...,M and j=l,...,N}, and

IBt and B the corresponding marginal distributions of Tt and Tr,

respectively, then

E - IBn(t) < Z rB W < rjB Bn B B

and

d(TrBt,'7B) < 2 jBn (t)

where

PBn(t) = [X/(n-l) t n - Z b rj E{(L rj)n }

B

Moreover, if X has a Poisson distribution with mean then (cf. Hoel

et al [30, p. 107]

EX < /2} < (vr2 -/)

and

P(X > 26} < (e/4) 8

30

NADC-81105-50

Letting

OBn(t) B rj BnB r

it then follows that

P{C rj(t) < rj(t)/2 for all (r,j) in B}

rj--- rj

F 1 P{c C.j(t) < I- .(t)/21

(9)

f x -(t)

< (/--/e)
B n (t)

and

Bn(t)

P{C rJ(t) > 2 r j (t) for all (r,j) in B} < (e/4) (10)

Fialy i * C*
Finally, if * {C* } is a random vector having distribution 7, then

rj
letting t- in (9) and (10), we see that

P{Cr < /2 for all (r,j)} < (V2/7e) (11)
rj -rJ

and

P(C > 2r for all (r,j)} < (e/4)& (12)
rj3 r1

31

NADC-81105-50

The preceding results suggest that, if possible, the resources placed

at node j (I < j < N) should be adequate to simultaneously process at

least 2 er jobs in class r (1 < r < 11), whenever the external input

process is Poisson with rate N. More generally, if a fixed amount of

processing capacity, say Pop is available to the system as a whole, then
M

the portion of that capacity placed at node j should be (7- " j
r~l rj ,0

2.4 EXTENSIONS OF SDP

The spatial dynamic programming methodology was used to solve a

deterministic software allocation problem. In this section we consider

two extensions of the methodology in order to achieve a more realistic

model. First, the method is extended to allocate files as well as tasks.

Second, allocation with the possibility of hardware failures is considered.

Previously, communication was assumed to occur directly between tasks.

In reality, when a task finishes executing it may write its results to a

file. Another task reads the file, then uses the data to perform its job.

The file must be stored in a memory, and thus requires a certain amount of

space. The allocation of files must be done along with the allocation of

tasks.

The extension in this case is quite simple. We consider a file to be

a "task" which requires memory space but has no instructions. It communi-

cates with all tasks that write to it or read from it. A certain amount

of memory is needed for each file. We can then allocate the files along

with the tasks in the SDP algorithm.

The second extension, involving hardware failures, is far more complex.

For clarity, the problem will be simplified to that of minimizing the

finishing time of all tasks, subject to memory constraints. Other con-

straints, such as communication and task execution time, can easily be

incorporated.

32

NADC-81105-50

We will assume that each hardware element (processor with dedicated

memory) has an independent probability of failure, say p. This is a

rather strong assumption, but it greatly reduces the amount of computa-

tion required. Processor dependent failure probabilities can be accommo-

dated, with a consequent increase in computational load.

Important tasks should be assigned to more than one processor. If a

processor fails, the tasks can still execute on another processor to which

they have been allocated. If p is small, it is unlikely that more than

one processor will fail. As a result, we will assume that no task is

assigned to more than two processors. If a task is assigned to two, then

one is designated the primary assignment and the other the secondary assign-

ment. The task runs on the primary processor unless that processor fails,

in which case the task runs on the secondary processor.

The optimization criterion should be based on the performance of the

system. If there are no hardware failures, we can again minimize the task

finishing time. Without memory constraints, every task would be allocated

to two processors and would be certain of executing. However, if some

tasks are allocated to only one processor, these may not execute. This

should degrade performance somewhat.

Define d.i to be a penalty which is incurred if task i- is not

executed. This value can be high for critical tasks, low for less important

ones. It can be in any units meaningful to the decision-maker. If tasks

is1 i2 9 .. i k are not executed, the total penalty is some function

f(d ,l d , 2' . .' d).

Now we need to combine the two attributes of time and penalty. For

a given allocation and a given realization, let T.i be the completion

time of processor j and D the set of non-executed tasks. We can then

postulate a multi-attribute utility function U, of the form U(max T ,f(D))

which is decreasing in both arguments. The objective is to find J

the allocation which maximizes the expected utility.

33

NADC-81105-50

This problem cannot be solved by SDP. The problem is that both the

maximum time and the penalty are global measures. The combination of the

two given by the utility function cannot be broken down into the stage-by-

stage optimization problems needed by SDP.

However, suppose the performance criterion is given instead by

U(E(max T.) E(f(D))), where U is some nonlinear function and E is
ii

the expectation operator. Now the problem is separable, and can be solved
by SDP. The only requirement is that the function f be of the nested

form needed for SDP, in which the function value at the current node depends

only on the variables at the current node and the function value at the

previous node. Examples of such functions are the sum, product, or maximum

of the penalties.

Figure 2.10 illustrates the situation. There are a finite number of

allocations, each of which incurs an expected comtpletion tine and an

expected penalty. Indifference curves can be drawn using the U function

to give the tradeoff between time and penalty. The allocation on the lowest

indifference curve is the optimal solution.

Indifference
Curve

Expected
Penalty0

Optimal
Allocation

Expected
Completion
T ime

Figure 2.10. Time/Penalty Tradeoff

34

NADC-81105-50

In the deterministic case, cf. 117], each decision variable x.. took

one of two values, 0 or 1, depending on whether or not task i was allocated

to processor j. Now we need to distinguish between primary and secondary

assignments. The decision variables will now take one or four values,

which for simplicity will be denoted 0, 1, 2, and 3.

x.. = 0 if task i is never assigned to processor j.

= 1 if processor j is the primary assignment for task i,

and there is a secondary assignment.

=2 if processor j is the secondary assignment for task i.

=3 if processor j is the primary assignment for task i,

and there is no secondary assignment.

The reason for distinguishing between the values 1 and 3 is that if processor

j fail6 and x.. = I no penalty is incurred, but if x.. = 3 a penalty

is incurred.

k
Define S.. as the set of tasks for which x.. = k. If processor j

1] i]
does not fail, its expected finishing time is

T.= 1 i + 3 tij + p 2 t-
i E Sij i E Sj i E Si i 3

where t ij is the execution time of task i on processor j. The expected

penalty is pf(S 3),

The allocation problem posed above still cannot be directly solved

by SDP. Instead we solve the problem

35

NADC-1105-50

Minimize max T.

Subject to f(D) < Z

and memory constraints

for several values of Z*. For each value of Z , call the solution to

this problem T Several pairs (T , Z) are obtained, and can be

evaluated using the U function. The allocation which gives the optimal

pair is the solution.

In order tc L -e SDP, another state variable Z is appended. Z is

discretized usir- relevant values of the expected penalty. At each stage

the problem of minimizin8 the finishing time is solved, but subject to the

penalty being no more than each value of Z. At the final stage the values

of Z become those of Z , and the comparison of solutions can be done.

The computations needed for this problem are significantly more than

for the deterministic problem. To begin with, the fact that the number

of values for each decision variable is increased from 2 to 4 essentially

squares the number of computations at each stage. The addition of another

state variable (the penalty level) also increases the computations. However,

if the SDP procedure is used only in the design process to find an optimal

allocation, this may not be too burdensome.

36

NADC -81105-50

SECT:ON III

OPTIMAL ARCHITECTURLES FOR DISTRIBUTED SYSTEMS

As stated in the introduction, SCT's long-run goal is to develop a

methodology to simultaneously solve the software allocation and nardware

design problems. Our first step towards this goal is to look at the two

problems separately. A method for integrating the two problems :ill be

developed later.

This section on optimal architectures is organized as follows.

Section 3.1 presents an overview of the problem. Section 3.2 describes

a computer program which was developed as a tool to evaluate candidate

architectures. Section 3.3 looks at a particularly important problem

which involves small interprocessor distances. Section 3.4 examines

several problems related to network reliability. The final section (3.5)

discusses the topic of bus connection networks, which are a more general

and more realistic way of describing a distributed computer system.

3.1 PROBLEM OVERVIEW

In this section we consider the problem of how to optimally design a

distributed system architecture. Before looking at various architectures,

though, we need to define the system's building blocks. The main system

elements are a set of processors. Each processor has its own dedicated

memory. The interprocessor communication is handled via a specified comn-

munication structure. In Sections 3.1-3.4 this structure consists of a

set of bidirectional links between processors (although unidirectional

links will also be mentioned). Section 3.5 looks at a more general com-

munication structure, in which groups of processors are connected to buses.

The communication mechanism will be assumed to be a message-passing

protocol. That is, if processor A needs to send a message to processor B,

the message is sent through a sequence of processors until it reaches B.

37

NADC-81105-50

Either a routing algorithm or a look-up table can be used to determine

this sequence. In a local network (such as an avionic system), the time

to send the message along each link is insignificant compared to the delay

incurred by having to go through several processors. Thus the delay in-

curred can be assumed to be proportional to the number of intermediate

processors along the route between the given processors.

For a real system, the delay depends on both the specific hardware

used and the operating system. As a result, this model only pertains to

some systems. For example, in the case of multiple processors connected

to a linear bus, the delay may be proportional to the total number of pro-

cessors connected.

A graph-theoretic model has been used to analyze various possible

architectures. Such a model uses only the network topology, or how the

processors are connected, to evaluate how good the network is. In reality,

there are many other considerations, primarily involving the particular

software that is going to be used on the system. Nevertheless, the topo-

logical analysis can tell us quite a bit about the network performance.

The following graph theory terms will be frequently used in this

chapter:

Note: a graphical representation of a processor, usually shown as
a dot ()

Edge: a line segment connecting two nodes, representing a bidirectional
communication link between two processors.

Degree of a node: the number of edges connected to a node.

Degree of a graph: the maximum of the degrees of the no des in the
graph.

Regular graph: a graph in which every node has the same degree.

Distance between two nodes: the minimum number of edges between
two nodes.

Diameter of a graph: the maximum distance between all pairs of nodes.

38

NADC-81105-50

A B

)C D

Figure 3.1. Ring Network

Figure 3.2. Fully Connected Network

39

:NADC-311O5-5O

To show how these terms are used, consider a few possible distributed

architectures, shown in Figures 3.1 - 3.3. Figure 3.1 shows a ring archi-

tecture on 6 nodes. There are 6 edges in the graph. Each node has degree 2,

so the graph is regular and has degree 2. The distance between nodes A

and B is 1, between A and C is 2, and between A and D is 3. The diameter

of the graph is 3.

Figure 3.2 shows a fully connected architecture on 6 nodes. Every node

has degree 5, so the graph is regular. Since every pair of nodes is con-

nected by a link, the distance between each pair is 1. Thus the graph's

diameter is 1.

Figure 3.3 shows a hierarchical architecture with 7 nodes. This graph

is not regular, since the top node has degree 2, the next two nodes have

degree 3, and the bottom nodes have degree 1. The diameter is 4.

Figure 3.3. Hierarchical Network

In designing a processor interconnection network, there are many

different factors to consider. These factors include the following:

40

NADC-81105-50

1) The number of connections per processor should be small. This is

motivated by feasibility and cost; processors with a large number

of ports may not be available, or may be very costly.

2) The distance between processors should be small. In a message-

passing network, the delay time for a message is approximately

proportional to the number of links which must be traveled over

between processors. The minimization of delays should be one of

the objectives of the network design.

3) No processor or link should be on a high proportion of the shortest

paths between processors. Such a configuration would cause queueing

delays, which would degrade the performance.

4) The network should be highly reliable. If a processor or link

fails, the network's performance should not be seriously worsened.

These various factors are often in conflict. For example, if we allow

each processor to be connected to only two others, then a ring architecture

(Figure 3.1) is the best possible. With n nodes, the diameter of this

graph is n/2. A fully connected network (Figure 3.2) has a diameter of

only one, but requires each of n processors to be connected to n - 1 others.

Figure 3.4 illustrates the tradeoff between the two factors of degree

and diameter in the case where we have 12 nodes. As the allowable degree

increases, the possible diameter decreases. Some graphs which correspond

to these values are shown in Figure 3.5. The best graph among these depends

upon the desired cost/performance tradeoff.

Suppose the cost of a network with n processors depends solely on the

number of links in the network. Let us assume that each processor can

accommodate as many as n-1 links. If the links are very expensive, the

best network will have as few links as possible. Assuming that the network

41

NADC -81105-50

DUOAETER

A
60

4

a
30

2

D

1 2 3 4 5 6 7 8 9 10 11

DEGREE

Figure 3.4. Degree/Diameter Tradeoff for 12-Node Graphs

A: d-2, k-6 Bt d=3, k=3

C: d-4, k-2 D: d11l, k-l

Figure 3.5. Possible 12-Node Graphs whDere d, Diameter k

42

NADlC-81105-50

must be connected (there must be a path between every pair of nodes), the

best network would be a tree, suech as that in Figure 3.3 The tree with

the smallest diameter is a star, such as the one in Figure 3.6. A major
polmwith this type of network is that all messages between processors

must go through the central processor. Furthermore, if the central processor

fails the network becomes disconnected.

Clearly there are many graph theory questions which are of interest

in the design of distributed computer systems. The next section describes

a tool which was developed in order to look at some of these questions.

Figure 3.6. Star Network

43

NADC-81105-50

3.2 A NETWORK EVALUATION TOOL

In order to evaluate a proposed network architecture, a computer program

called NETEV has been developed. The purpose of this program is to serve as

a design tool. Parameters which characterize the network are inputs to the

program. The outputs specify the performance of the network, both with and

without hardware failures. A listing of this program appears as Appendix B

of this report. It is written in FORTRAN, for a DEC VAX 11/780.

The program inputs are:

-- Number of processors

-- Number of links between processors

-- Where the links are

-- "Distance" of links (which need not be one)

The program outputs are:

-- Maximum inter-processor distance (diameter)

-Average inter-processor distance

-- Expected diameter, given a single processor failure

-- Expected average distance, given a single processor failure

-- Expected diameter, given a single link failure

-- Expected average distance, given a single link failure

-- Fraction of links which can fail and leave the network connected

-- Average fraction of connected processors, given a single link failure

The code assumes that the links are bidirectional. However, the algorithm

does not require this, and a simple modification of the code would allow uni-

directional links.

The first two outputs characterize the network performance if there are

no hardware failures. To analyze the effect of failures, we assume a model

in which the probability that a processor or link fails is small, so that

44

NADC-81105-50

the probability of more than one failure can be safely neglected. Further-

more, we assume that every processor fails with equal probability, and that

every link fails with equal probability. The program can be easily modified

so that the probability that each processor or link fails is an input.

There are a number of different measures of the effect of hardware

failures on network performance. We can analyze how the diameter or average

distance is increased as a result of a node or link failure. However, for

many networks (such as hierarchical ones) these values will be infinity, and

so little information is gained on how reliable the network is. The last

two measures attempt to rectify this problem. In some networks it may be

important for all processors to communicate. Thus the fraction of links

which can fail and yet leave the network connected is relevant. In a ring

architecture any link can fail and the network will still be connected;

while in a hierarchical architecture if any link fails the network will be

disconnected. However, perhaps not all pairs of processors are required

to communicate. As a result, we may want to know about what fraction of

the processors can communicate, given a link failure.

The heart of the program is the calculation of the distance between

all pairs of processors. This is done by using the Floyd-Warshall

algorithm (24], which is an efficient method for finding the distance

between all pairs of nodes in a graph. This algorithm is used on the net-

work for each possible node or link failure.

As an example of how the method works, consider the two graphs shown

in Figure 3.7. These graphs are examples of the chordal rings of Arden

and Lee [2). Notice that in the left graph each chord (the links inside

of the ring) subtends 5 nodes, while in the right graph each chord subtends

7 nodes. To determine which of these is optimal we can use NETEV to calcu-

late the maximum distance and average distance. Assuming that each link

has length 1, the two graphs have identical diameters (4) and average

distances (2.5263). However, suppose we can use links with a different

45

NADC-81105-50

Figure 3.7. Two Chordal Rings

bandwidth for the chords. Using NETEV, we find that if the bandwidth

of the chord links is greater than that of the ring links, then the left

graph is optimal; while if it is less, the right graph is optimal. This

result corresponds to our intuition. If the chord bandwidth is low, the

chords must subtend many nodes in order to be on a shortest path; while

if the chord bandwidth is high shorter jumps can be used. NETEV can also

be used to compare the performance with failures, but in this case the

two graphs perform identically.

NETEV allows us to compare networks using many different criteria.

If we limit ourselves to only a few criteria, some interesting quantitative

results can be obtained, as shown in the next section.

3.3 MINIMAL DISTANCE PROBLEM

Two of the fundamental quantities related to a distributed computer

system are the cost and the performance. From a graph-theory viewpoint,

the cost (for a fixed number of nodes) may be represented by the number

of edges. The measurement of performance is somewhat more difficult.

46

NAC-81105-50

Without knowledge of the software to be used on the system, we need to

be concerned about the distance between all pairs of nodes. It is diffi-

cult to work with the whole set of distances, so various statistics about

the distances are used. Two commonly used statistics are the average dis-

tance and the maximum distance, which equals the network diameter.

Our work has principally focused on the diameter, for several reasons:

- The diameter characterizes the worst-case situation, which is likely

to be the one of most concern.

- Networks with small diameters tend to have small average distances,

while the converse is not necessarily true.

- The diameter is quicker to use in computations. Given two graphs,

if the second has a pair of nodes which is further apart than the

diameter of the first graph, then the second graph has a larger

diameter. To compare average distances, all of the distances in

the second graph would have to be calculated.

Many interesting questions arise from the cost/performance tradeoff.

For example, given a number of nodes n and an allowed diameter k, what

graph has the fewest edges? If k = 1, we must have a complete graph

(Figure 3.2) with n(n-l)/2 edges. If k = 2, then a star network

(Figure 3.6) can be used, with n-l edges. For any larger allowed diameter,

we must still have n-l edges, in order for the network to remain connected

and the diameter to remain finite.

A problem with both the complete graph and the star graph is that at

least one node must have degree n-l. Real processors can be connected to

only a limited number of other processors. Thus there should be a bound

on the degree of a node.

47

NADC-81105-50

The following problem was posed by Bollobas [9 1: Given a number of

nodes n, a maximal degree d, and a maximal diameter k find a graph with

the fewest edges. Unfortunately, few results for this problem can be ob-

tained except in limiting cases. The maximum number of edges under these

conditions is ndI2, which would occur if every node had degree d. Will

this number of edges be sufficient to produce a graph with the desired

diameter? If k is too small, it will not be. However, if k > n/2, for

any d > 2 there will be a graph (a ring). Thus there will be some minimal

diameter for which there exists a graph with n nodes and degree d. We

seek this minimal diameter, for it gives us a bound on the network perfor-

mance. This minimal diameter network is likely to be a regular graph, and

as such it may have more links than necessary for a real system. However,

to design a real system we could start with such a graph and then remove

unnecessary links.

Thus the problem we are interested in is: Given a number of nodes n,

and a maximum degree d, find a graph with the minimum diameter k. En

general, as the number of nodes increases the minimum aiameter increases.

Thus we can consider a dual problem: Given a maximum degree d and a

diameter k, find a graph with the maximum number of nodes. Of course,

when designing a system we are not really going to choose an alternative

with the most processors. Rather, the solution to the dual problem will

say that for a degree d and diameter k, we can have as many as n nodes.

If we want to construct a network with n' < n nodes, we can probably

find one with diameter k or less.

The maximum number of nodes in a graph with degree d and diameter k

can be denoted n(d,k). An upper bound on n(d,k) is easily calculated.

From any given node at most d nodes can be reached in a distance of one

and, for ,j > 1, at most d(d-l) j- nodes can be reached in a distance

of j. Thus

n(d,k) < 1 + d + ... + d(dl) k-1

d - 2

48

NADC-81105-50

Expzession I is called the Moore bound, and any graph which has that number

of nodes is called a Moore graph. Most Moore graphs fall into two classes:

1) rings with an odd number of nodes, where d = 2; 2) fully connected net-

works, where k = 1. In [31 it was shown that for k = 2 there are only

a few other Moore graphs: the Petersen graph (Figure 3.8) where d = 3;

the Hoffman-Singleton graph, where d = 7; and possibly a graph with d = 57.

In [5] and [151 it was shown that there are no other Moore graphs. In [6

it was shown that except for the square there are no graphs with a number

of nodes equal to one less than the Moore bound. No better upper bound on

n(d,k) has been established.

Figure 3.8. Petersen Graph

We shall denote by b(d,k) a lower bound on n(d,k). Values of

b(d,k) can be obtained by exhibiting a graph with degree d, diameter k,

and b(d,k) nodes. A number of authors have written papers on finding

improved values of b(d,k). These authors include Elspas [21], Akers [i],

49

NADC-81-105-50

Friedman (251, Ko'rn 136], Storwick [44], Arden and Lee [3), and Leland

et al [37). In each of these papers, a new construction method is given.

Some of these~ methods are shown in Figures 3.9 - 3.11. Figure 3.9 shows

a "star polygon" which was used by Elspas. In Figure 3.10 a "hinging"

graph is shown. It can be thought of as three hierarchical graphs, with

the nodes on the lowest levels joined together. This method was used by

Friedman and Korn, and a generalization of it was used by Storwick. Arden

and Lee used a "multi-tree structured network" approach, an example of

which is shown in Figure 3.11. Leland used a heuristic method to construct

his graphs, which are the largest published graphs for small degrees and

diameters.

SCT has discovered a new class of graphs which are larger than those

of the other authors for many degrees and diameters. These are called

chordal ring graphs, and are a generalization of a structure proposed by

Arden and Lee [21. Two examples of Arden and Lee's chordal rings are

shown in the previous section, Figure 3.7. In their structure, every node

has degree 3. The graph begins as a ring on n nodes, then chords are

drawn connecting additional pairs of nodes. Each odd node is connected

to the even node which is w nodes ahead of it on the ring, where w is

some specified odd number.

The generalization is twofold. First, more complex chordal connection

schemes are used. The Arden and Lee rings can be thought of as having a

pattern of length two, in that every other node is connected to the node w

nodes ahead of it. This can be generalized to larger pattern lengths, or

orders. Figure 3.12 shows a chordal ring of order three, in which every

third node is connected to the node across the ring from it, while th-e other

nodes are connected to nodes which are 8 nodes either ahead of or behind

them. This graph has diameter 4.

For a given number of nodes, finding the optimal connection scheme

usually requires a computer search. For each feasible order (the order

must divide the number of nodes), all combinations of chord lengths must

be checked. Letting r be the order and n the number of nodes, the
r/2

number of combinations has the form c(r)-(nr) ,where c(r) is a

50

NADC-81105-50

Figure 3.9. Star Polygon

Figure 3.10. Hinging Graph

51

NADC-81105-50

function which grows like r!'. (See (201 for this derivation). As either

n or r grows large, checking all possibilities becomes infeasible. For

most of the results given here, a random search method was used, examining

a fixed number (about 1000) of possibilities.

The second generalization is that larger degrees can be used in chordal

rings. Figure 3.13 shows an example of a chordal ring with degree 4,

diameter 3, and 36 nodes. While the computations for finding optimal chordal

rings are even more burdensome with larger degrees, those found by the random

search method are better than graphs constructed by any other method.

For the smallest cases which are unsolved (degree 3, diameters 4

and 5), heuristic methods were able to produce larger graphs than in the

literature. The heuristics, however, were based on chordal rings. Fig-

ure 3.14 shows the 38 node diameter 4 graph, while Figure 3.15 shows the

60 node, diameter 5 graph. This size of a system is probably at the upper

end of the size of avionic systems in the near future.

The status of the problem of maximizing b(d,k) is shown in Table 3.1,

for degrees and diameters not exceeding 7. For some cases (those circled),

the largest possible graph has been found. In the other cases, the value

of n(d,k) is an open question. For those cases in which there are two

numbers, the top number is the best published result while the bottom

number is the best result obtained by SCT. Notice that in almost all cases

we have been able to obtain better results.

En order to construct larger networks (with several thousand nodes),

different methods must be used. While such networks are unlikely to be used

for avionic systems in the near future, they are a natural outgrowth of

the work on small networks. Furthermore, with the increasing miniaturization

of processors, such networks may be feasible in a few decades.

The paper by Imase and Itoh [33] describes a particularly interesting

network based on de Bruijn sequences [16]. For degree d and diameter k,

these networks have (d/2) knodes, which for d > 6 and sufficiently

52

NADC-81105-50

I1

Figure 3.11. Multi-Tree Structured Network

u 3er

Figure 3.12 A Generalized Chordal Ring

Figure 3.13. A Degree 4 Generalized Chordal Ring

53

NADC-81105-50

Figure 3.14. 38 Node, Degree 3, Diameter 4 Graph

Figure 3.15. 60 Node, Degree 3, Diameter 5 Graph

54

NADlC-81 105-50

CQ L 4 O 0o C) 0 00 0n

-m- CCD CO LO T0 0i. 0
to 00 CD CDJ In Un Co 00

-\ CJ Il E-

,-J C\J Lo~ 00 0 n

0j 0 \ -

m, Ul 00' O Ln00)~
WJ. m -n co. .CIn ~1 In

cm 0

0

C,~ w

S)

In In Lai -3

LLL.

2e2

0 255

NADC-8 1105-50

large k is larger than any other known type of network. These networks

have a simple routing algorithm. Furthermore, if a processor failure occurs

a new route can easily be calculated [43]. The netw.orks presented by Imase

and Itoh can also be unidirectional, in which case they are almost as large

as theoretically possible. The routing algorithm, and how to adjust it

when there are failures, is given in Appendix C.

The other principal method for constructing large networks is by using

graph products, some of which are described in [37] and [18]. Products of

various small graphs are used to produce large graphs. Products of the new

chordal ring graphs, using the methods in [37], can produce larger graphs

than the examples cited in that paper.

While the problem of maximizing the number of nodes in a graph has not

been solved, substantial progress has been made. Of course, there are

several other factors we are incerested in. The issue of network reliability,

and the tradeoff between this and short distances for hierarchical graphs,

is discussed in the following section.

3.4 NETWORK RELIABILITY

There are many attributes besides short distances that are of interest

when designing a network. This section briefly explores one of these attributes,

that of network reliability. In particular, we look at the tradeoff between

reliability and short distances.

Network reliability can be characterized in many different ways. We

will consider a simple model in which each node or edge fails with a known

probability. These failures will be assumed to be independent; the dependent

case is much harder.

Some of the important measures of reliability are:

-The probability that a particular node pair, or set of node pairs,
can communicate.

-The probability that all node pairs can conmmunicate.

56

NADC-81 105-50

- The probability that all nodes can communicate with one particular node.

- The expected number of nodes which can communicate with a particular
node.

- The expected number of node pairs which can communicate.

A few of these are similar to the quantities which can be computed using

the NETEV program discussed in Section 3.2. However, that program assumed

that the failure probabilities were small, so that the probability that more

than one hardware element fails could be safely neglected. If this assumption

is not valid, the problem becomes mu .A~ more difficult. Reference 147] pre-

sents an algorithm for computing network reliability, and gives several

references to other algorithms.

Bollobas [I 9] discussed a problem which ties together performance, cost,

and reliability. In general, the failure of a node or edge increases the

graph diameter. The problem he considered was given a number of nodes n,

degree d, and diameter k, find the graph with the fewest edges in which

the deletion of any node does not increase the diameter beyond k' > k.

Edge deletion instead of node deletion can also be considered. These problems

are even more difficult than the similar problem without failures discussed

in Section 3.3, and there are even fewer results. Figure 3.16 shows an

example of a critical graph. If an edge is deleted, the diameter may in-

crease from 6 -_- 9.

Another measure of reliability which may be easier to calculate is the

number of uio~es or edges which can fail (alone), and yet all remaining node

pairs can communicate. Again, this may be a relevant measure only if the

probability of multiple failures is very small. There is an interesting

tradeoff between this measure and having short distances, which we will now

examine.

In particular, suppose we have a graph to which we want to add an

additional edge in an optimal fashion. Such a step might be an iteration

in a network construction algorithm, or it might be a separate item of

interest. The optimal place to add it depends upon the function we want

to optimize, as can be seen from a simple example. Suppose we have a large

number (several dozen) nodes in a linear architecture (Figure 3.17). Let

us find the optimal place to add one additional edge, in order to minimize

57

NADC-81105-50

Figure 3.16. Example of a Critical Reliability Graph

Figure 3.17. Linear Architecture

the average interprocessor distance. Intuitively the edge should be

symmetric, connecting processors at a fraction f from both ends. Then

we can calculate that with n processors the average interprocessor

distance is approximately

(2f 3/3 + f2 _ f/2 + 1/4) n

The minimum value of this function occurs at f - (,2 - 1)/2. Thus the

edge should connect processors about 20% from each end.

However, suppose we want to add an edge in order to increase the

network's reliability. Let us define the reliability as the fraction of

nodes (or edges) which, if they fail, will not disconnect the network.

58

NADC-81105-50

For the linear architecture example, this is equal to 1 - 2f. The minimum

of this is at f - 0, where the result is a ring architecture. Figure 3.18

plots the average distance versus the reliability. It is optimal to be on

the right side of the curve, if high reliability and small distances are

desirable. Here f is between 0 and (/2 - 1)12. However, the best

point depends on the tradeoff between these two factors.

AVERAGE
DISTANCE

.28

.24

.2 U

tw yI I 1
.2 .6 1 RELIABILIT

Figure 3.18. Average Distance vs. Reliability
for Link Added to Linear Graph

We can also look at the problem of finding the best place to add an

edge to a tree, or hierarchical, network, for performance or reliability

purposes. Cockayne. Ruskey, and Thomason 114] look at the problem of

finding the best place to add an edge to a tree network in order to minimize

the average distance. Their algorithm enumerates all node pairs and calcu-

lates how much the average distance is improved by adding an edge between

59

NADC-81105-50

those nodes. This is done in an intelligent manner, so that the number of

calculations is only proportional to n 2k, where n is the number of nodes

and k is the diameter. A brute force method would require calculations
5

proportional to n .Additional details on their method appear in Appendix D.

If we define reliability by the number of nodes or edges which can fail

(singly) and keep the network connected, it turns out to be relatively simple

to find the best place to add edges to a hierarchical graph. Define a node

or an edge to be protected if, when it fails, the network remains connected.

For a node of degree d to be protected, the d parts of the graph con-

nected to it must be connected to each other. This requires at least d-1

additional edges. For an edge to be protected, it must lie in a cycle

(that is, the two nodes which the edge connects must have another path be-

tween them).

The optimal method can best be illustrated by an example. Figure 3.19a

shows a hierarchical graph, which is "regular" in the sense that every node

above the bottom row has the same number of successors. The method works

only on networks of this type. The basic idea is to protect nodes and

edges from the top of the hierarchy to the bottom, protecting as many as

possible at each step. In the example, the bottom nodes are originally

protected, but no edges are. In order to protect the top node at least 3

edges must be added, while in order to protect each second row node at least

4 edges must be added. The largest cycles which can be created use 4 of the

original edges. Figure 3.19b shows how two new edges protect 8 old ones

(the dark ones). With one more edge the top node is protected and circled,

as well as 2 more edges. This is shown in Figure 3.19c. With 2 more edges,

as in Figure 3.19d, two more nodes and 4 more edges are protected. The final

two nodes and 6 edges can be protected with 3 new edges, as in Figure 3.19e.

Thus 8 edges were needed to protect every hardware element. Clearly fewer

are insufficient, as each new edge can protect at most two of the bottom

row of edges.

60

NADC-81105-50

a. Original graph

b. Addition of two edges to protrit 8 edges

c. one more edge to protect 1 node, 2 edges

Figure 3.19. Additional Edges to Increase Reliability

61

NADC-81105-50

d. Two more i.ges to protect 2 nodes, 4 edges

e. Three more edges to protect 2 nodes 6 edges

Figure 3.19 (Continued). Addition of Edges to Increase Reliability

62

NADC-81105-50

We have seen many types of networks with links which connect two nodes.

A more general communication structure may be more faithful to real systems,

and may produce better results. This topic is explored in the next section.

3.5 BUS CONNECTION NETWORKS

In some computer sy-,tems, the model of having two nodes connected by

an edge is not very realistic for the communication mechanism. Instead,

several processors may be connected to a bus and may be thought of as being

equally distant from each other. At the same time, each processor may be

connected to several buses. The result is a bus connection network.

Figure 3.20 illustrates the situation. For processor 1 to communicate

with processor 5, a message is sent through bus A to processor 3. This

processor then sends the message along bus B to processor 5. Since two

buses were used to send the message, we can say that the distance between

processors 1 and 5 is 2.

A B

W -aProcessor

Figure 3.20. Example of a Bus Connection Network

We will use a model discussed by Mickunas (42) for a bus connection

model. In this model, each node is incident on a certain number of buses,

which we will call its degree. The maximum of the degrees of the nodes

will be called the graph's nodal degree. Each bus has a certain number

of nodes on it, which will be called the degree of the bus. The maximum

of the degrees of the buses will be called the graph's bus degree. For

notation, we will denote the nodal degree by d, the bus degree by b, and

the diameter by k.

63

NADC-81105-50

Two nodes will have a distance of one if they are incident on a common

bus. In general, the distance between two nodes is the minimum number of

buses which must be passed through to get between them.

The standard graphical representation of these networks is to use

lines as buses, connecting the nodes which are points. However, these "lines"

become complex curves in even very small networks, making any sort of visual

analysis impossible. Instead, we will use a representation of the network

as a bipartite graph. A bipartite graph has two types of nodes, and nodes

of each type are connected only to nodes of the other type. One type of

node represents the original nodes, while the other type -epresents the buses.

In the figures in this section nodes are filled-in cirzli, buses are empty

circles. An edge represents a node incident on a bus. Figure 3.21 compares

the two representations for a particularly interesting graph with 7 nodes

and 7 buses, each with degree 3. The graphs have diameter 1. In the first

figure, each side of the triangle, each median, and the circle in the middle

represent buses. The node correspondences between the two figures are given

by letters. One particular advantage of this new representation is that

many results from standard graphs can be used.

A concept analogous to Moore graphs can be defined for bus connection

network,. From each node at most d buses can be reached, from which at

most d(b-l) nodes can be reached. Thus the maximum number of nodes in a

diameter 1 graph is 1 + d(b-l). Similarly, in two steps at most

d(d-l)(b-l) 2 nodes can be reached and, in j steps, at most d(d-l) -1

(b-l)j nodes can be reached. If we define n(d,b,k) as the maximum

number of nodes in a graph with nodal degree d, bus degree b, and diameter

k, we have

n(d,b,k) < 1 + d(b-l) + d(d-l)(b-l)
2 + ... + d(d-l) k-l(b-l) k

1 + d(b-) (d-l)k(b-l)
k

- 1
(d-l)(b-l) - 1

A graph with this number of nodes is called a Moore geometry.

6'

NADC -81105-50

AA

F B

GB F

ED D

Figure 3.21. Two Representations of 7 Node, Diameter 1 Graph

Since there are very few Moore graphs, it is natural to ask if

there are any Moore geometries. Let us first consider the case of d =1

A Moore geometry with diameter 1 has 1 + d(b-l) nodes. The simplest

case here is where d = b (the node degree and bus degree are the same),

so there are d- - d + 1 nodes, and the same number of buses. Every

pair of nodes is on exactly one common bus.

The existence of such a graph depends on the existence of a mathe-

matical object called a finite projective plane, a subject which has been

extensively examined. It can be shown that such a plane exists if d - 1

is a prime power [45]. En certain other cases it can be priv-i that a

projective plane does not exist [11]. However, the general problem remains

unsolved. For values of d between 3 and 10 projective planes exist in

all cases except d - 7.

65

NADC-81105-50

Now let us look at the case of d # b. These graphs are known as

balanced incomplete block designs, or BIBDs. Such designs are used in

constructing agricultural and biological experiments. There are certain

restrictions on the parameters of a BIBD. Since nd/b is the number of

buses, this number must be an integer. It can also be shown that we need

d > b [27]. While these conditions are not sufficient to guarantee

the existence of a BIBD, if d - 3 or 4 they are sufficient [28]. In

addition, if an order d-1 projective plane exists, then a BIBD can be
2

derived with the same d, b = d-l, and (d-l) nodes. Several examples

of BIBDs are given in [23].

The question of the existence of Moore geometries with diameters

greater than one is more complicated. None are known if b > 2. Bose

and Dowling [101 give necessary conditions for existence when k = 2,

although they could find no graphs satisfying those conditions. Fuglister [261

showed that there are no Moore geometries with k = 3.

One simple result is that there are no Moore geometries with d = 2

and b > 2 (if b = 2 we get rings). This is an important case since

many real microprocessors have two ports. The proof of this is given in

Appendix E.

Several construction methods for bus connection networks have been

proposed in the literature. These include the hypercube and dual bus

hypercube [46], and snowflake and star graphs [22]. These constructions

are motivated by their simple structure and easy routing algorithms. If

we are interested in small interprocessor distances, however, these simple

structures may not be the best.

Consider a problem analogous to the one discussed in section 3.3 for

standard graphs. We seek a graph with the maximum number of nodes which

has node degree d, bus degree b, and diameter k. To begin with, let

us consider some small special cases.

66

NADC -81105-50

1. n(l, b, 1) -b

This is obvious -- it is a single bus of degree b. It is the only

trivial case of a Moore geometry with b > 2.

2. n(2, b, 1) -b + 1.

From the graph in Figure 3.22 (using the bipartite graph representa-

tion), we see that n(2, b, 1) > b + 1. To show we cannot put more nodes

in the same graph, consider an initial graph consisting of the top node and

top two buses. A node which is on the left bus must share a bus with all

nodes on the right bus. But each of those nodes must share a bus with all

nodes on the left bus. As a result, all second-tier nodes must share a

common bus, so there can be only b. Adding the top node gives b + 1

total nodes.

3. a(2, b, 2) = b 2 + 1.

The graph in Figure 3.23 shows n(2, b, 2) > b 2+ 1, for b = 5. The

analogous construction for other b's is obvious.- To show this is the

maximum possible number, look at Figure 3.24, which shows the largest

potential graph from a particular node. Call the nodes below a level 3/2

bus a group. Every left level 2 node must share a bus with some node in each

right group, in order to reach every right level one node. The converse

applies to each right level 2 node. Thus every bus must contain a repre-

sentative from every group. As a result, there can be at most b groups.

But then there are 1 + b + b(b-l) = b 2+ 1 nodes.

In both cases 2 and 3 these graphs, which are maximal, are about half

as large as the Moore bound.

For several values of r and b, the value of n(r, b, 1) can be

determined. For example, n(3, 4, 1) -8, as shown in Figure 3.25. Several

other examples are given in (191.

67

NADC-81105-50

0 Nodes 0 Buses

Figure 3.22. Graph Showing n(2, b, 1) > b + 1

33

Additional buses connect

all nodes with the same
4 number

1 2

22

Figure 3.23. Graph Showing n(2, b, 2) > b2 + I

68

NADC-81105 -50

Level

0

1/2

1

k-l 3/2

2

k-i

Figure 3.24. Graph Showing n(2, b, 2) < b+

Additional buses
connect
ABEF; ABDG;
CEFG; CD.

A B C D E F G

Figure 3.25. Graph Showing n(3, 4, 1) =8

69

NADC-81105-50

For larger networks, general construction methods must be developed.

While there will not produce maximal graphs, they will produce reasonably

large ones. The basic method is to use special cases of the graphs described

in Section 3.3 which are bipartite. Certain star polygons, multi-tree

structured networks, hingings, and chordal rings are bipartite. One type

of node is designated the processors, and the other type is designated the

buses. The diameter can then be calculated, and the graph evaluated. More

details on these methods can be found in [19].

Figure 3.26 shows a hinging example. In this type of graph the processor

nodes and bus nodes can have different degrees. Here d = 3, b = 4, and the

diameter k - 3. There are 40 processor nodes.

Figure 3.27 shows how a chordal ring can represent a bus connection

network. In this case the bus degree and processor degree must be equal.

Here there are 24 processor nodes and a diameter of 2.

The graphs based on de Bruijn sequences can be generalized for use as
k

bus connection networks. These networks will have a size of (db/4) , when

d and b are both even. In addition, some of the graph products can be

used with bus connection networks. Both of these topics are discussed

in [19].

70

NADC-81105-50

Figure 3.26. A Hinging With r =3, b =4, k =3

Figure 3.27. Chordal Ring With Degree 3,
Diameter 2, 24 Processor Nodes

7).

NADC-81105-50

REFERENCES

[i] AKERS, S. (1965). On the Construction of (dk) Graphs. IEEE Irans.
Electron. Comput. Vol. EC-14, p. 448.

[2] ARDEN, B. and LEE, H. (1981). Analysis of Chordal Ring Network. IEEE
Trans. Comput. Vol. C-30, pp. 291-295.

[3] ARDEN, B. and LEE, H. (1982). A Regular Network for Multicomputer
Systems. IEEE. Trans. Comput. Vol. C-31, pp. 60-69.

[4] BAKER, K. and SU, Z. (1974). Sequencing with Due Dates and Early Start
Times to Minimize Maximum Tardiness. Nay. Res. Log. Quart. Vol.21,
pp. 171-176.

[5] BANNAI, E. and ITO, T. (1973). On Finite Moore Graphs. J. Fac. Sci.
Univ. Tokyo Vol. 20, pp. 191-208.

(6] BANNAI, E. and ITO, T. (1981). Regular Graphs with Excess One. Discrete
Math. Vol. 37, pp. 147-158.

[7] BASKETT, F., CRANDY, K.M., MUNTZ, R.R. and PALACIOS, F.G. (1975). Open,
Closed and Mixed Networks of Queues with Different Classes of
Customers. J. Assoc. Comput. Mach. Vol. 22, pp. 248-260.

[8] BOKHARI, S.R. (1981). A Shortest Tree Algorithm for Optimal Assignments
Across Space and Time in a Distributed Processor System. IEEE
Trans. Software Engr. Vol. SE-7, pp. 583-589.

[9] BOLLOBAS, B. (1978). Extremal Graph Theory. Academic Press, London.

(101 BOSE, R. and DOWLING, T. (1971). A Generalization of Moore Graphs of
Diameter Two. J. Combinational Theory Vol. 11, pp. 213-226.

[11] BRUCK, R. and RYSER, H. (1949). The Nonexistence of Certain Finite
Projective Planes. Canadian J. Math. Vol. 1, pp. 88-93.

[12] CHUNG, K.L. (1974). A Course in Probability Theory. 2nd Ed. Academic
Press, New York.

(13] CINLAR, E. (1972). Superpostion of Point Processes. In Stochastic
Point Processes: Statistical Analysis, Theory, and Applications.
P.A.W. Lewis, Editor. Wiley, New York. pp. 549-606.

(141 COCKAYNE, E.J., RUSKEY, F. and THOMASON, A.G. (1979). An Algorithm for
the Most Economic Link Addition in a Tree Communications Network.
Inform. Proc. Letters Vol. 9, pp. 171-175.

[15] DAMERELL, R. (1973). On Moore Graphs. Proc. Camb. Phil. Soc. Vol.'74,
pp. 227-236.

[16] deBRUIJN, D.G. (1946). A Combinatorial Problem. Nerderl. Akad.
Wentensch. Proc. Ser. A49, pp. 758-764.

72

NADC-81105-50

[17] DOTY, K.W., McENTIRE, P.L. and O'REILLY, J.G. (1981). Design
Methodology Study for Airborne Distributed Data Processing
Systems. Final Report, Contract No. N62269-80-C-0121, Systems
Control, Inc.

[18] DOTY, K.W. (1982). Construction Methods for Asymptotically Large
Graphs. Tech Memo. 5452-3, Systems Control Technology.

[19] DOTY, K.W. (1982). Dense Buss Connection Networks. Tech. Memo. 5452-2,
Systems Control Technology.

[20] DOTY, K.W. (1982). Large Regular Interconnection Networks. (To be presented
at the Third International Conference on Distributed Computing Systems,
Hollywood, Florida.)

[21] ELSPAS, B. (1964). Topological Constraints on Interconnection-Limited
Logic. Switching Theory Logic Design Vol. S-164, pp. 133-147.

[22] FINKEL, R.A. and SOLOMON, M.H. (1980). Processor Interconnection
Strategies. IEEE Trans. Computers Vol. C-29, pp. 360-371.

[23] FISHER, R. and YATES, F. (1963). Statistical Tables for Biological,
Agricultural and Medical Research. Hafner, New York.

124] FLOYD, R.W. (1962). Algorithm 97: Shortest Path. Comm. ACM Vol. 5,
p. 345.

[251 FRIEDMAN, H. (1966). A Design for (d,k) Graphs. IEEE Trans. Electron.
Comput. Vol. EC-15, pp. 253-254.

[26] FUGLISTER, F.J. (1977). On Finite Moore Geometries. J. Combinatorial
Theory Vol. 23, pp. 187-197.

[271 HALL, M. (1967). Combinatorial Theory. Blaisdell, Waltham, Mass.

[28] HANANI H. (1961). The Existence and Construction of Balanced Incomlete
Block Designs. Ann. Math. Statist. Vol. 32, pp. 361-386.

[29] HARRISON, J.M. and LEMOINE, A.J. (1981). A Note on Networks of
Infinite-Server Queues. J. Appl. Prob. Vol. 18, pp. 561-567.

[301 ROEL, P.G., PORT, S.C. and STONE, C.J. (1971). Introduction to
Probability Theory. Houghton Mifflin, Boston.

[31] HOFFMAN, A. and SINGLETON, R. (1960). On Moore Graphs with Diameters 2
and 3. IBM J. Res. Develop. Vol. 4, pp. 497-504.

[32] HU, T.C. (1961). Parallel Sequencing and Assembly Line Problems.
Operat. Res. Vol. 9, pp. 841-848.

[33] IMASE, M. and ITOH, M. (1981). Design to Minimize Diameter on Building-
Block Network. IEEE Trans. Comput. Vol. C-30, pp. 439-442.

73

NADC-81105-50

[34] KAUFMAN, M.T. (1973). Efficient Near-Optimal Scheduling of Multi-
Processor Systems. Ph.D. Dissertation. Department of Computer
Science, Stanford University.

[35] KEMENY, J.G. and SNELL, J.L. (1960). Finite Markov Chains. Van
Nostrand, Princeton, N.J..

[36] KORN, I. (1967). On (d,k) Graphs. IEEE Trans. Electron. Comput. Vol.
EC-16, p. 90.

[37] LELAND, W. et al. (1981). High Density Graphs for Processor Inter-
connection. Information Processing Letters Vol. 12, pp. 117-120.

[38] LENSTRA, J.K. and RINNOOY KAN, A.H.G. (1978). Complexity of Scheduling
Under Precedence Constraints. Operat. Res. Vol. 26, pp. 22-35.

[39] McENTIRE, P.L. and LARSON, R.E. (1981). Optimal Resource Allocation in
Sparse Networks. IFAC/81 Congress, Kyoto, Japan.

[40] MA, P.R., LEE, E.Y.S. and TSUCHIYA, M. (1982). A Task Allocation Model
for Distributed Computing Systems. IEEE Trans. Comput. Vol. C-31,
pp. 41-47.

[41] McMAHON, G. and FLORIAN, M. (1974). On Scheduling with Ready Times and
Due Dates to Minimize Maximum Lateness. Report, Dipartment d'Infor-
matique, Universit4 de MontrEal.

[42] MICKUNAS, M.O. (1980). Using Projective Geometry to Design Bus
Connection Networks. Proceedings of the Workshop on
Interconnection Networks for Parallel and Distributed Processing.
West Lafayette, Indiana, pp. 47-55.

[43] SCHULUMBERGER, M.A. (1974). de Bruijn Communication Networks. Ph.D.
Dissertation, Department of Computer Science, Stanford University.

[44] STORWICK, R. (1970). Improved Connection Techniques for (d,k) Graphs.
IEEE Trans. Comput. Vol. C-19, pp. 1214-1216.

[45] VEBLEN, 0. and BUSSEY, W. (1906). Finite Projective Geometries. Trans.
Amer. Math. Soc. Vol. 7, pp. 241-259.

[46] WITTIE, L.D. (1981). Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput. Vol. C-30, pp. 264-272.

[47] BALL, M.O. (1979). Computing Network Reliability. Operat. Res.
Vol. 27, pp. 823-838.

[48] TORNG, H.C. and WILHELM, N.C. (1977). The Optimal Interconnection
of Circuit Modules in Microprocessor and Digital System Design.
IEEE Trans. Comput. Vol. C-26, pp. 450-457.

744

NADC-81105-50

APPENDIX A

SPATIAL DYNAMIC PROGRAMMING COMPUTER CODE
FOR

SOFTWARE ALLOCATION

A-1

NADC-81105-50

ILI

I lI c
la w IM W

Cc I I= I
1 P I i

i U IU P. -J V
I z

PP-I F ILUw p . I p-
I6C I LI L I I

a- z. I4 II 0

u, AU IU IL I-f

WI IL CI 6 '
10 1 w I-C OW Q! U

I~.--I I. CA
I~-U~w Iu- 1) lu- .. - 4'

U, wsuibw ItW(~ I I 2c .II I'
I 11.ZWIWWa£m1ccW1 4'cc

CC WIll. I ccl I2

CLIL 0 0 C. 00w

I-I-*I-WA-2

NADC-8 1105-50

II,

-l I- z 1

P. I I cc c

w

Inw la I-

W W.I 0.0 10 2q

I-I -. Q I ILj I w ta-
1.

5ow II21

wwi

I Iz I1 Ow .- - ..I

IA -115w

NADC-8 1105-50

n in

c c

a cc rd t

C2 2 4, -
re & e . .4 r

U C,

M I J z CA

I. w 1' -0 ,w w

2I .. 1. - 0 Iw - a v

w - - .

I V~ C0 ; a':w
Lo .. e 'I a- 4

z2- W 1 0I- aC

WW- i.C w~ a 0. 1. P- 0 -
ft -- a a a

0 m w I. (VI f. C0 : L w
Z Z C &CL -

LU WL -£U 0U -
,I LU4 .-.- 02 w Z Z

4.. I j j

WI-t tt Icc "W 11 w C

4S. . I 0 W w lu

-. ~~~U w-~'~~

i- ILe- . g .

ui-4-

I. Is WW-W
'.W CL w .I-' U

*~ ~~ ~ §O II 0 Ia 5

-2 uZZ Z I-~A-4 1W S ~ *. --

NADC-81105-50

Us x

-z I cc

rd U-3

Z I. X

a~ --

Of -9 I
Ic

wa a w 0I W: W.
U

*c f
11 L0

6 c

z' w I -$ 0& vp
IZ '. ,D

w -. mu z aj ..

0~~6I
j

w I

0L ~ W Z.OL

-a E wA ; §.B

a~w - --- I 0 -
Z1 io-

z -W CLI >- kmI Z W ~ ('

I'Cg -5C 12 0~0 --

NADC-81105-50

4

aa
1- r

1. 4&- I a4

* I w

I rd (a . uo

I ac -z aU
I C- I= - C

*~~ c - 2
I' c -. I Z 1-- 0

cc w a I- z a a cc
I-. -C a.I -c P0 I-V

W :: a - 0 4. 0- t- -

o 2. - c .z 0 w a. w
W 2~ 1S z I .

- .. a I cc 9L CL 6 0 1 b

(1 u P- r. S u U 15
1.4 aa 2 0

*aa 2 a 6 C- a A U. 4. 'oI 1

39 ; IL C I-. 8 I
z al (ULaw S6 z a 4.4 j I

.J C J 9 J c J

C-~~~ fa ia* - u -
U ~ ~~~ -IIS 1W0 5-

02& W PU.- w z
t4.- w 0* a * =i 2C I "

C. -1 z4 -- a z I
Igw z.o I

~w z
1

W ..- S -

S* I I cca w I a .5 'WI z 5--0 - ~ o-a.. L" Im
z' i 2 I24I W WWCWzw

ZI. w.a e. - ziac Z = 4~ cc Wi cccc w

~a v. w ~ wI - CL- >X atI 6*U

ua u i 9i- ~ I~*. W -0 - .UA-6

NADC-81105-50

1 W
m CCI I

I tS

z A

t- S

ILS

Li I W- -

9L I Cu cc(

S S 0 0- S

1w SI A U S I A

-CO Sw w -O U4 w 0. U. w

SI NO I m w Z. C I S
-2 119 W4 L km O YC

A-75. SI

NADC-81105-50

z m

I U z

o - I -(5w- . I c)f-
w w I (Ap

0 a I -

j 0 1 il I- . Z 4 0 I

E " 0Q0 Q.2 z

o ' 01W2. Z 4' .. 04c>> w

.j -4 4- 0 3 Z-
IZ Lo Z U, U. , -

ul (l Iw 2 cum11 I

2() . . .UI. IL I' 9L-. 0I

a -. j 4 IW U W 4 2 -A-.2

NADC-81105-50

0

as

a j ZI

Z. .4

55 1. 1-P at

J Z Z 0 Z it

ed It

IV 9 .5 I

J Q CJ J I1 is

ILI p --I

(I~1 .. 54.. 0C

z94 -' 9 dU

S. ~~~i c ~U -. 0-
C~~4 i~£nV . W U

I-U ~ IIL)~ I- A-9

N&OlC-8 1105-50

I I 1 2 0
I U I U. 0I

LI I , I

I 1 IitII
IL I. W, I CI I

II . lei Im aI i

m w a I IU
ZI1 -I It z j j Ij J

I I cc 3, a I
I I I 1 I WI w it"A

I~ wo w lo-III . I
1cc j(u~II (I

I! w Zfu W1 cc I -
fI W 1 1£~id 1W 5 0 aW > IaC..

0 1. w w I I >£ I -1 % L - 1w

0 00 1~ cc loWg I W,.C cc'n
,a3 I I 0

II (a w It awwIMP-1- - C - I tw IZ
I 10 10 IZ I L I I L 1 10 WI-

1 IIl -11 1! WI I I .. I Z
a £ a £ I I Ia. ccD W£ ~

-. 1 it -.1 =1U ---- ----

0m WI I~WI
W2i-. U I 0 It I-jau1 :,zuO d o

2U i 2
a .32Wmg

p3 >~-.. > > > I c > IOM WOW >I >jj jOJ

0O6I (a...1 I-I -I 0 lw 1 I- -. ~£ II I IU£ .333(. .. .

-1 ~ 100 100 1w IOUwi. W lo w Z O

I tw a I : 1w I
IL3 - CL- L1 1 0 I a. WI

W0~I(3A-10

NADC-81105-50

e < ' ('<

a I I

I I I

wo .. I . € <' ' 'g ((' € {

II cc j~ I

l W W W I W

I- . • I U I .. I K W ,

oJ E I H a -Zzzzz.
- I , c I I cc

i> I .- I -
I I I

P- I-CC -If

IV IL WWI Y. 291 N 0000

We lu II C W 0 I 0I

'j,~(~ It U, W 1 *zc W .i
I ~ ~~~ W a-W in011 I ICCI

z I" W ~ C t - C Ou -2W~ -

WUg I cc -C W -0 C
IW CLWp- L.g t.wwww

Iimcze UC ut -A-110 0C 00 0

NADC-81105-50

IIn

- I

la

* I '

,- I I'

I'[, .
2 .

I -I .U+I ,+ + m >

I Ix

4, ' I" 6.
am az

cc I I- I W

A-1W

Iu I a J0 m c ,a

I I -
- a - It I W -I

= >
II 1I 'at.

j ~ . -02 1 010t

00 I. I- 0.-ci . .
IM t- x ?- cc

-m 0; :9 l'00I; 0z
I.Cl

j j~C£~

I 1l I w. . I-
I--I W. w ,w . - . .2-.

I. I ~ Q t

K' W I w . ,x . 31 1 1. z8~ I I-.£ lot -

3 t-I P- P#-j 0 01. "Q

1L I . ~ 1W I ~ Q IK~g

IN-Z J~ I CIW 0.

A81

NADC-8110 5-50

aa

I- c a '

*I z P:nU f

(A W9 f 0: w

o 0-8- 081 l- I

ci_ wi '-I - -

-01 lz I g.0 0 0
-~~~~~5 4 02La 40-I.

-. 000 0ZA inI- u .0 wM ao
5 twU - '1 5 gg Z

o' 0.L 0 -WH P -!: o'
'u- 61 ,-L -..i, c Uo u!

ow2OWz 5
1220.W

j :1

I. W

.j~~ w
- -~ ~ 1 U.. 0 1 m*w 4. I .in

0*~~~U W .gg ~
A- 3 *a-

NADC-81105-50

I w c
I a 1

20 Wz
43 *+

I -I

w w ep

40 1. I
I.. II £W -

It~~~~_ w n - -1

1W w- a Z a M amu a
tj .t- 19 Inn) - . I
I- vcK0MII nK£d ~ 013 I.14* I

Q. z rU OW 0 .XuI

A-14.

NADC-81105-50

w5
ai

1IM a

1 03

6 C2%

39 x

J ~ +iWI-c

;. (V m~ qp to 0 I .cWC

w 6 w 0 Q Q
AI U I I 6. - 40. g

z i3 I.. a
Pa- wa- aU

ILLt k0) I- 2c6 a6
It 39- f0j01 % I

6-~ lU)

I- 6
cc. X- U

1
O (~ 0 66-W I~lCU

0.0- wo 0-15

NADc-8110 5 - 5 0

mC

*00

C . K 6 L I L 6 Ck . L 4 . - C L.

b. 0

WU
.....

WUsWW

rd~ as.

CS 0- 3 (A

Cci a ccc IwC

-~ ~~ V.I

0w m

Cc Or.ZZZZZZw I.

.
I

I. 0.I I I 1

ic v c x - I -

.8 -C --
t- 0i

U 00~~UUUU WW
Z

wwo I

~ g ~~ 1- D~ ~ ~g ~A-16

NADC-81105-50

CL - -

to m2

10 u00.-

z~W W.W t1 cc0 cc

luIl

11 tug -- UII cc- v, ci- 1 ls4ww ~w
^I I4 1- ft t-I It l - ' -

*I WU V qo t! 1 .

1 A' LM CAII I W I.. t'.

w I
I. I w~- z 0- v 0 - P wa

Ia a c u wzI2-0 I0 CL in -o I0 W. -vv v v ~ IL cc

i0~ .V4 1WWI.)A-171

I(.i~1(j WWWWWWWI0

AD-A117 948 SYSTEMS CONTROL TECHNOLOGY INC PALO ALTO CA 06G 9/2

ENHANCEMENTS AND ALGORIT HMS F OR AA IONIC I NFORMATI ON PROCESSING -ETCCU)
JUN 82 K DOTY, A LEMO INE, P MCENTIRE N62269-81-C 0477

UNCLASSIFIED NADC-81105-50 NL

2-2ffffffffffff

NADC-81105-50

(A W Im

I CL

A - *

L z

--0 P 0 4.•

efl I I2 0"

I I a z

- ""
K

01) a OR - Uz u4

II u.s;s) I ; -.

Z X 0 V2 I.

?- S 1z -- -'A- - -

f. i. A

0o00l Kc mg ii g O~U
00 C u I- Z 11 1- .

I W > W K Q~ 1 0.

J ~ ~ ~ ~ = zj 0 gMIOL.0N0 7 w!
-C 1I lii is 2 . W ~ .U

K I WO QI ~ w.N

U - I g £ U £ C "I.

Soo+ +~A +I-..~A-13
N.°0 I' I IC£ I 1 I z: + N: + IN -+- - -+

MAC-81105-50

ww

3e i

U, z 1,99

ug a - 4f Mp

, 09

I, I

.~ .6 .~

-C z~ .-. .. 16 - £1 13 & <, I I; .. mu t- -
w al -j. tw- N I AI

-~ 0z- * W U- M. .E . .-

6-U% a-w 3 I-g .u U-. .. . -- wu

M A W, -C 9 I I I I 1 2 o- 0 1

.1> 3) 15&JM -) 11) ccZN ZI coWa6-M

t-M I. I ~ U.6 Z0 W-

A-19

NADC-81105-50

ai

ILM
A-2 0)

NADC-81105-50

-l
z 'Z

In0
r 0 .

f It

A 6 ' 0 al Iv I.

I. I~

.1I CL~

ws 4 &W ; 0 -,IPL jI:I

74 W 2

I~w I Ml.-I-

A- I.

NADC-81105-50

Ac c

I w

a
Il

1 - i

16 S. a

I cc W
I(I ccI

- P

z I. IL 1, a- I. U I

z c I C

P.. . l* d I - 1 0

0.501 JOEII~ -z
- ~~~ -. -(W M I4

1-00 t- O 1% P.-1 -

I ?-
ZME 1W I I

Ic I-
Z.. ;w xz 1 01- 1h- .f I

1-~ ~ -a 0

W I

A-2

) .

NADC-81105-50

w ~ ~ : z- Lu GG LM.~oGG W~~.~. Gu

W CC W W W WWWWW W'

- ; , '- " zzzz ,' ' w, 0 ll ,' ' , -, ' , ' ' , ' , 0

a cc W - - - -AW m

S -- .---- I I I I II

I~ K W

.W K , . 'I . II I I - .. I 1 i
, t ..

W 1- c 0 W : iW 9 Wl ui 0 W W s 0c W cc S N, 4 'Z r- 'cc o0-

a-Ma,.-a. .

U h,:- w -u

-A-2

NADC-81105-50

0- -l m m? n 0 Ol 0- l W -- ,

In - cLt a- PO- -- - - - ---

ILLLL II a 0 m c

w - 0-9

Opp a-5Is-!5- I I. (iL

ai I. I.- I £I IL I1W1- w 0 i
I z Vow UZIa 1n-1 at.. I(; WOLW"

04 .. P .I .A.IG. 1-

a. z a IL 0. IL cc w w.cc1 5nZC a. *..=

L)L 0. CL Cc~E t-

WW

I - IE TWiL
aLK 1w QI, w

Mi OII W=1
0-,-- r-, t

A-24

NADC-81105-50

talc'

-R l
0 o A 4IA t.- I-a 1- x

Is g'~WX
o - 0- uW IL

La .L. IL ;

A-2 5

NADC-81105-50

SAMPLE INPUT AND OUTPUT
FOR

SDP PROGRAiM

A-26

NADC-81105-50

00 00 00 coo 000 00 000 0 00
200801Og 0 SSOo2Oa2 N. v , 0 000 (a 4r N

ra-4V 6 4 a c a - -0 i~ 4

WWI ww w wwazwwwmwwwwwwm 2 w~ww

A--27

NADC-811.05-50

A- 28)

NADC-81105-50

00 00 00 000 000 00 000 0 00
00 00 00 000 000 00 000 0 00

00 00 00 G00 000 00 000 0 00

MM~~4 I'l MM1M M M 0M 4 44

ccc c c cc ccIc cca ccr c cc

u4 W. uU. vvl U.c ce ccc 1

cc r rc crc r.c c rc c cc c cc
00 0 0 a0 0 a0: 000 0 0 0a0 0 0 00

W LO .U3 -WU (A U LJC (4 U U

SE S S 65 11 ElIl k S.

.0 o+ 04 0 O40(w- 0 4 .4

* 6 6 m% A rd r, 0' CV A '0 0' 85* Mmm u a*.

tfu ft- - -- - -- -f

4'. 4' M.0 4' 4' .l .'. 4. .4 .' 4' +. .0 -0 +. 4.M (DMP .0 (0 4& 4

uu~ ~~~~ UU 'a 0U UU U U U

.0 U, fl

'0 06(14 :, 10 9 - 0
MM 0 M 0 4' MM4 0l 4'~ M M M ~

0 Ceses ueu0e~m~eu6 k 16 1. f.sg M~s-M -Ms C7eee ca O -ee-e-oaeeeaeC o eoeeeO;eO
L u(LEuS L u ILIE (uLuL -- b----..95-..S9

ss iee s Usg egg eggesesU sAs-29

NADC-81105-50

0 I t' N 0 m 0 -

ml 4e v 4 rd0

a 0 a 0
a 40 6p I S

tt t go S S

1 2 2 2 3 2 2 a

t; 0 tv 0 n- a a 0 a a

0.t40.0 0 LI 2 0 a0

SO SS SO O ~ l 4a 4. 4 4
- - - z -z :: o

n 4 4lV~4q ooeaoaa 4 6 .4

------ ----- a a a a 0
aaa aa a a c-- - -. N7C ci - Nv4 0 -

333333a32 22 2 S 40 40 rci S6 rd

vmm~ e .u u a L

-~~~ -- - -M S 6 Z I

~~~~~OC a...a a - - - - ii
- .-~~~ uu u J u .. .. .. .. . . . ..

40C CC C 40. -40 40 0 ci z a w el
... A. 2. v. 2. C, 0m. aI

c~~~U I. a. a. a. 1. a. c6. aaaaa01 1.
-a a aa a * - -. - -- a CIL L , k . OL 5 LL C. . Cl.W

.aaaa..aaaa aaaaaaaaaa A . 30 . .



NADC-811
0 5 -50

APPEN~DIX B

NETEV PROGRAM
TO

EvALUkTh COMPUTER XETWORKS

B-i



NADC-81105-50

1I

wC

, , w
w M C I. Ci

IL' W.O U. W

.- o. a~a~ Mc

2 1. N N

C C 2

uu IL. 
IJ 

C

B3-2



NADC-81105-50

w

I-

W -

'a In

w -A

am I
0 w 0.- IflU MU.IR ;

0-0 - c- 1 ~ 1 z ..
FA -C c Wd -J j

WIL ~ ~ -2 2. n 0

m n . Is W -'2
Vu cU. U. '4 mn U. mIW4

ca a I.'..

0ci w Q Z 0 l li

WL L ~.B-3



NADC-81105-50

m w

w -

0 zz

1. 00-

- o

ICz 
17 a

W . - CO

- U -U Io -am

U. W2 u u 4

www u2 -- UU q

-B-4



NADC-81105 -50

w
Z Z 7

z a-n

z

U.0 0

B-5



NADC-81105-50

IA w

Uzi

zw v W 2ww

-B-6



NADC-81105-50

w

w

zI.- I2
c - LU

CL CL -1 C
'C 2

0- Ca z

02 I i Q N C-
2- w x 2':x

w OZ
ti C - 0 m 19, C c

x woZ +U -- z LU; C
L0 u LU a 0

,c 0. 0 LUE + U zU i 4 a

4C W 0M 4C 0x .

U. a o- LU U..
0c 2%6 P-z -lz CD o wo 61

J J c'C Oo>z w- rEx
ZI 0. m > O>O 04 0

C wc o d 2w 2 I w I - w -C i--
-LL. 0 0+4 2i -2 aZ .;Z Owl coICOW

-C I. 2z JZ <Z - 04

cc- I SW- ; 4

4 4 Z .- L-E. M2- ,Iwa

-z xLUw 41C >8 0.8 w ~ U U wiz 4

-w 4z0U ~ - Dw z
4

LUU I WU .UUU ULI UL LU UI QU ULI ULI U UU LL

B- 7 )



) %

NADC-81105-50

Ii iii

k o-

w . .

tol 0 -

-l + 0.

c (V

U, z
-Ca

w 4u

B-. so



NADC-81105-50

- w
cc w

0 Wi -
2i w W U.

M2 0- II
> - 0 0

w. U..U

w w

w W

02~ U. U. U. I
w z C X - -W

02 0 >-
U Z w I I.- 3c(

*c U 00

00 .,1 JU .z EZ x 00 0 w0

(OC w
z IC z -- a

-x -o IIJ
Q U V- (Z uZ4 U 0 u d U U

B-9



NADC-81105-50

ME
.

a Z2

4 If

• £

tj ri w u"J

B-10

.. .... .. . .* -



NADC-81105- 5 0

z

cc U.

I* La

z J

z7 9 LL
0: z 0

- I

L6 U
to w -C i-

wI- u - - U - -
* U WO-1-



NADC-81105-50

APPENDIX C

ROUTING ALGORITHM FOR DE BRUIJN GRAPHS

To describe the routing algorithm, the representation in [37] will

be used. Each node is represented as a vector of k symbols, each

taking values from 1 to d/2 (assuming d is even). Node

(v I v 2 .... Ivk)

is connected to all nodes of the form

(xvV 2 .... vk I)

or

(v2 ,v3 .... ,Vk,X)

where x takes any value from I to d/2. To show that the graph has

diameter k1  suppose we want to go from (vl,v 2,... ,vk) to (W1 ,W2,... Wk).

At the first step go to (Wk,vlv 2 ,... ,vk_l) , at the second step to

(wkl,wk,vl.... ,vk_2), and in general at the ith step to (Wk_(i-l),

Wk_(i_2),...,V ). After k steps the desired node will be reached.

Suppose we want to go from (voV 1 .... Vkl) to (v29,v 3 ... ,vk+l).

By the above method this would be accomplished in two steps, going through

(VlV 2,...,vk). However, suppose this last node is not functioning.

A different sequence involving only four additional steps can be taken [43].

Let a,b,c, and e take values from I to d/2. The sequence is

STEP NODE CONDITIONS

0 (V0 ,V1,.... vk-1)

1 (V1 ,V2 ,.. ,vkl,a) ax k

2 (v2 ,v3,.. ,Vk-l,a,b) b#xk

3 (c,v 2,- ... Vkl,a) c#x1

4 (e,c,v 2, ... Vk-l) evx 1

5 (CV 2,... ,Vk-l,Vk)

6 (v2,.... vk,vk+l)

C-I



NADC-81105-50

This method will work as long as there is only one failure. If there

are more failures, additional conditions may have to be imposed.

C-2



NADC-81105-50

APPENDIX D

ALGORITHM FOR BEST LINK ADDITION IN A TREE NETWORK

This algorithm, from [14], finds the best place to add a link in a

tree network in order to minimize the average distance. All pairs of nodes

are considered, but the enumeration is organized so that the time to cal-

culate the improvement is proportional to the graph diameter.

The algorithm is given in the paper as a PASCAL procedure. Three

data structures are used. A vertex and its associated information is called

a node and is defined by:

node = record

adj: t edge;

desc: l...n;

imp,tri,sum: integer

end

The nodes are organized into an array called "a", in which they are numbered

from 1 to n. The adjacencies in the network are given by "edges", where

edge = record

vert: vertex

next: t edge

end.

The procedure is as follows:

D-1



NADC-81105-30

procedure DFS(w: vertex;d: 1..n)
var p: 4 edge;
begin p :-a(wl.adj;
while p # nil do
with a[pt.vert] do { w' -pt .vert:
begin t[d] :=a[w].desc - desc;
if d mod 2 -1 then

begin { d is odd}
imp :-a~w].imp -a[w].tri

+ 2*desc*aiwjI~sum;
trouble :=O;1 :1l;j :=(d+3)div 2;
while j<=d do

begin
trouble :=trouble +t[i]*t~j];
i :=i+l;j :=j+l

end;
tri :a[wJ.tri - trouble;
sum :=a[w].sum + t[(d+l)div 2]

end
else begin {d is even)

tri :=a[w].tri + t[d div 2]*desc;
imp :=a[w].imp - tri + 2*desc*a[w].sum;
sum :aw.u

end;
if imp > max then

begin max :-imp;
best vertex.vl :-v
best-vertex.v2:=p .vert

end;
DFS(pt.vert,d+l);
p :-p+.next

end
end;

By calling DFS(v,l), the best vertex to connect v with becomes the

value of the global variable best-vertex.v2. This can be done for all

vertices v, and thus the best pair is found. Methods are given in the

paper for reducing the number of computations even further.

D-2



NADC-81105-50

APPENDIX E

Theorem: There are no Moore geometries when the nodal degree is 2 and the

bus degree Is greater than 2.

Proof: If such a Moore geometry did exist, it would have

1 + 2((k-1) + (k-1) 2+ ... + (k-i) d1(1)

nodes. Now in a Moore geometry the number of nodes times the nodal degree

must equal the number of buses times the bus degree. Since the number of

buses is integral, we must have twice expression (1) divisible by k. That

is, we need

2 + 4[(k-1) + (k-i) 2+ ... + (k-i) d 0 (mod k). (2)

H4ost of the terms on the left, when the powers are expanded, are powers of

k and can be eliminated without affecting congruence (2). Thus we must have

2 + r(-l) + (-1) 2+ ... + (-I) d 0 (modkQ (3)

If d is even, (3) becomes

2 2 0 (mod k)

while if d is odd, (3) becomes

-2 --:0 (mod k).

In either case, k cannot be larger than 2.E

E-i




